首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yu F  Al-Shyoukh I  Feng J  Li X  Liao CW  Ho CM  Shamma JS  Sun R 《PloS one》2011,6(6):e20998
The ability to control cellular functions can bring about many developments in basic biological research and its applications. The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the responses to a number of signals. This work investigates the control of Kaposi's sarcoma-associated herpesvirus reactivation upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and cancer.  相似文献   

4.
5.
The oral cavity has been identified as the major site for the shedding of infectious Kaposi's sarcoma-associated herpesvirus (KSHV). While KSHV DNA is frequently detected in the saliva of KSHV seropositive persons, it does not appear to replicate in salivary glands. Some viruses employ the process of epithelial differentiation for productive viral replication. To test if KSHV utilizes the differentiation of oral epithelium as a mechanism for the activation of lytic replication and virus production, we developed an organotypic raft culture model of epithelium using keratinocytes from human tonsils. This system produced a nonkeratinized stratified squamous oral epithelium in vitro, as demonstrated by the presence of nucleated cells at the apical surface; the expression of involucrin and keratins 6, 13, 14, and 19; and the absence of keratin 1. The activation of KSHV lytic-gene expression was examined in this system using rKSHV.219, a recombinant virus that expresses the green fluorescent protein during latency from the cellular EF-1alpha promoter and the red fluorescent protein (RFP) during lytic replication from the viral early PAN promoter. Infection of keratinocytes with rKSHV.219 resulted in latent infection; however, when these keratinocytes differentiated into a multilayered epithelium, lytic cycle activation of rKSHV.219 occurred, as evidenced by RFP expression, the expression of the late virion protein open reading frame K8.1, and the production of infectious rKSHV.219 at the epithelial surface. These findings demonstrate that KSHV lytic activation occurs as keratinocytes differentiate into a mature epithelium, and it may be responsible for the presence of infectious KSHV in saliva.  相似文献   

6.
Kaposi's sarcoma-associated herpesvirus (KSHV) is present in all epidemiologic forms of Kaposi's sarcoma (KS). The KSHV genome contains several open reading frames which are potentially implicated in the development of KS. Some are unique to KSHV; others are homologous to cellular genes. The putative role of these genes in the genesis of KS is discussed.  相似文献   

7.
8.
9.
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus complement of over 85 open reading frames (ORFs), the expression of only a minority has been characterized individually. We have constructed a nylon membrane-based DNA array which allows the expression of almost every ORF of KSHV to be measured simultaneously. A PEL-derived cell line, BC-3, was used to study the expression of KSHV during latency and after the induction of lytic replication. Cluster analysis, which arranges genes according to their expression profile, revealed a correlation between expression and assigned gene function that is consistent with the known stages of the herpesvirus life cycle. Furthermore, latent and lytic genes thought to be functionally related cluster into groups. The correlation between gene expression and function also infers possible roles for KSHV genes yet to be characterized.  相似文献   

10.
The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) and neo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.  相似文献   

11.
Li X  Chen S  Sun R 《Journal of virology》2012,86(12):6668-6676
Primary effusion lymphoma (PEL) cells are predominantly infected by the latent form of Kaposi's sarcoma-associated herpesvirus (KSHV), with virus reactivation occurring in a small percentage of cells. Latency enables KSHV to persist in the host cell and promotes tumorigenesis through viral gene expression, thus presenting a major barrier to the elimination of KSHV and the treatment of PEL. Therefore, it is important to identify cellular genes that are essential for PEL cell survival or the maintenance of KSHV latency. Here we report that cyclin-dependent kinase 1 (Cdk1) inhibition can induce both apoptosis and KSHV reactivation in a population of PEL cells. Caspases, but not p53, are required for PEL cell apoptosis induced by Cdk1 inhibition. p38 kinase is activated by Cdk1 inhibition and mediates KSHV reactivation. Interestingly, upon Cdk1 inhibition, KSHV is reactivated predominantly in the nonapoptotic subpopulation of PEL cells. We provide evidence that this is due to mutual inhibition between apoptosis and KSHV reactivation. In addition, we found that KSHV reactivation activates protein kinase B (AKT/PKB), which promotes cell survival and facilitates KSHV reactivation. Our study thus establishes a key role for Cdk1 in PEL cell survival and the maintenance of KSHV latency and reveals a multifaceted relationship between KSHV reactivation and PEL cell apoptosis.  相似文献   

12.
13.
14.
The response of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) to inflammatory cytokine treatment of experimentally infected endothelial cells was investigated. The cytokines inhibited spontaneous KSHV lytic gene expression but not the level of infection. The data suggest that if inflammatory cytokines present in KS lesions contribute to KSHV pathogenesis, they do so in part by promoting latent KSHV infection of the endothelial cells.  相似文献   

15.
16.
17.
18.
Reactivation of Kaposi sarcoma-associated herpesvirus (KSHV) from latency for lytic replication plays a pivotal role in the development of KS tumors. However, the physiological factors of KSHV reactivation in KS patients remain undefined. Two recent studies independently discovered that the reactive oxygen species (ROS) H2O2 induces KSHV reactivation in latently infected cells, which can be inhibited by H2O2-specific antioxidants. H2O2 not only directly induces KSHV reactivation but also is involved in spontaneous lytic replication as well as reactivation stimulated by TPA, hypoxia, and cytokines. Furthermore, in a xenograft-based primary effusion lymphoma (PEL) mouse model, in vivo KSHV reactivation is also H2O2-dependent and can be suppressed by antioxidants. Mechanistically, H2O2 primarily activates the MAPK pathways to induce viral lytic gene expression and replication. This new finding defines a novel role of H2O2 in KS tumorigenesis and highlights great potentials of using antioxidants and anti-inflammatory drugs for the prevention and treatment of KS tumors.  相似文献   

19.
20.
Li X  Feng J  Sun R 《Journal of virology》2011,85(2):715-724
Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) cells are predominantly infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), presenting a barrier to the destruction of tumor cells. Latent KSHV can be reactivated to undergo lytic replication. Here we report that in PEL cells, oxidative stress induced by upregulated reactive oxygen species (ROS) can lead to KSHV reactivation or cell death. ROS are upregulated by NF-κB inhibition and are required for subsequent KSHV reactivation. Disruption of the intracellular redox balance through depletion of the antioxidant glutathione or inhibition of the antioxidant enzyme catalase also induces KSHV reactivation, suggesting that hydrogen peroxide induces reactivation. In addition, p38 signaling is required for KSHV reactivation induced by ROS. Furthermore, treatment of PEL cells with a higher concentration of the NF-κB inhibitor than that used for inducing KSHV reactivation further upregulates ROS and induces massive cell death. ROS, but not p38 signaling, are required for PEL cell death induced by NF-κB inhibition as well as by glutathione depletion. Importantly, anticancer drugs, such as cisplatin and arsenic trioxide, also induce KSHV reactivation and PEL cell death in a ROS-dependent manner. Our study thus establishes a critical role for ROS and oxidative stress in the regulation of KSHV reactivation and PEL cell death. Disrupting the cellular redox balance may be a potential strategy for treating KSHV-associated lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号