首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
3.
Yang Z  Yan Z  Wood C 《Journal of virology》2008,82(7):3590-3603
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) RTA is an important protein involved in the induction of KSHV lytic replication from latency through activation of the lytic cascade. A number of cellular and viral proteins, including K-RBP, have been found to repress RTA-mediated transactivation and KSHV lytic replication. However, it is unclear as to how RTA overcomes the suppression during lytic reactivation. In this study, we found that RTA can induce K-RBP degradation through the ubiquitin-proteasome pathway and that two regions in RTA are responsible. Moreover, we found that RTA can promote the degradation of several other RTA repressors. RTA mutants that are defective in inducing K-RBP degradation cannot activate RTA responsive promoter as efficiently as wild-type RTA. Interference of the ubiquitin-proteasome pathway affected RTA-mediated transactivation and KSHV reactivation from latency. Our results suggest that KSHV RTA can stimulate the turnover of repressors to modulate viral reactivation. Since herpes simplex virus type 1 transactivator ICP0 and human cytomegalovirus transactivator pp71 also stimulate the degradation of cellular silencers, it is possible that the promotion of silencer degradation by viral transactivators may be a common mechanism for regulating the lytic replication of herpesviruses.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
In primary effusion lymphoma (PEL) cells infected with latent Kaposi''s sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta''s promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号