首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The events at the earliest stage of adipocyte differentiation are yet to be fully elucidated. Previously, we cloned the genes that are induced at the beginning of the differentiation of mouse 3T3-L1 preadipocyte cells. We found that the gene expression of regulators of G protein signaling-2 (RGS2) rapidly increased after the addition of inducers and decreased at 3-12 h. The expression pattern of RGS2 mRNAs differed among growth-arrested and proliferating 3T3-L1 cells and NIH-3T3 cells, indicating a specificity for adipogenesis. Here we report that the ectopic expression of RGS2 using a retroviral system in mouse NIH-3T3 cells promotes adipogenesis only in the presence of BRL49653, which is a ligand for the peroxisome proliferator-activated receptor gamma (PPARgamma). These results strongly suggest that RGS2 play a crucial role in the program of adipocyte differentiation and may contribute to the function of PPARgamma.  相似文献   

4.
Choi YH  Kim HI  Seong JK  Yu DY  Cho H  Lee MO  Lee JM  Ahn YH  Kim SJ  Park JH 《FEBS letters》2004,557(1-3):73-80
Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.  相似文献   

5.
6.
7.
8.
Uncoupling protein (UCP) is expressed only in brown adipocytes and is responsible for the unique thermogenic properties of this cell type. The novel brown preadipocyte cell line, HIB-1B, expresses UCP in a strictly differentiation-dependent manner. Transgenic mice studies have shown that a region from kb -2.8 to -1.0 of the marine UCP gene is required for brown adipocyte-specific expression. Subsequent analysis identified a potent 220-bp enhancer from kb -2.5 to -2.3. We show that this enhancer is active only in differentiated HIB-1B adipocytes, and we identify a peroxisome proliferator-activated receptor gamma (PPARgamma) response element, referred to as UCP regulatory element 1 (URE1), within the enhancer. URE1 has differentiation-dependent enhancing activity in HIB-1B cells and is required for enhancer action, since mutations of URE1 that block protein binding abolish enhancer activity. We also show that PPAR gamma antibodies block binding to URE1 of nuclear extracts from cultured brown adipocytes and from the brown adipose tissue of cold-exposed mice. Protein binding to URE1 increases substantially during differentiation of HIB-1B preadipocytes, and PPAR-gamma mRNA levels increase correspondingly. Although forced expression of PPAR gamma and retinoid X receptor alpha activates the enhancer in HIB-1B preadipocytes, these receptors are not capable of activating the enhancer in NIH 3T3 fibroblasts. Our results show that PPAR gamma is a regulator of the differentiation-dependent expression of UCP and suggest that there are additional factors in HIB-1B cells required for brown adipocyte-specific UCP expression.  相似文献   

9.
ApoE is expressed in multiple mammalian cell types in which it supports cellular differentiated function. In this report we demonstrate that apoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity. Systemic treatment with pioglitazone increased systemic insulin sensitivity and increased apoE mRNA levels in adipose tissue by 2-3-fold. Treatment of cultured 3T3-L1 adipocytes with ciglitazone increased apoE mRNA levels by 2-4-fold in a dose-dependent manner and increased apoE secretion from cells. Conversely, treatment of adipocytes with tumor necrosis factor (TNF) alpha reduced apoE mRNA levels and apoE secretion by 60%. Neither insulin nor a peroxisome proliferator-activated receptor (PPAR) alpha agonist regulated adipocyte apoE gene expression. In addition, treatment of human monocyte-derived macrophages with ciglitazone did not regulate expression of apoE. Additional analyses using reporter genes indicated that the effect of TNFalpha and PPARgamma agonists on the apoE gene was mediated via distinct gene control elements. The TNFalpha effect was mediated by elements within the proximal promoter, whereas the PPARgamma effect was mediated by elements within a downstream enhancer. However, the addition of TNFalpha substantially reduced the absolute levels of apoE reporter gene response even in the presence of ciglitazone. These results indicate for the first time that adipose tissue expression of apoE is modulated by physiologic regulators of insulin sensitivity.  相似文献   

10.
11.
12.
13.
14.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in adipogenesis. PPARgamma binds to DNA as a heterodimer with retinoid X receptor (RXR), and PPARgamma-RXR can be activated by ligands specific for either receptor; the presence of both ligands can result in a cooperative effect on the transactivation of target genes. How these ligands mediate transactivation, however, remains unclear. PPARgamma is known to interact with both the p160/SRC-1 family of coactivators and the distinct, multisubunit coactivator complex called DRIP. A single DRIP subunit, DRIP205 (TRAP220, PBP), binds directly to PPARgamma. Here we report that PPARgamma and RXR selectively interacted with DRIP205 and p160 proteins in a ligand-dependent manner. At physiological concentrations, RXR-specific ligands only induced p160 binding to RXR, and PPARgamma-specific ligands exclusively recruited DRIP205 but not p160 coactivators to PPARgamma. This selectivity was not observed in interaction assays off DNA, implying that the specificity of coactivator binding in response to ligand is strongly influenced by the allosteric effects of DNA-bound heterodimers. These coactivator-selective effects were also observed in transient-transfection assays in the presence of overexpressed p160 or DRIP coactivators. The results suggest that the cooperative effects of PPARgamma- and RXR-specific ligands may occur at the level of selective coactivator recruitment.  相似文献   

15.
16.
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.  相似文献   

17.
Phosphodiesterase 3B (PDE3B) gene expression is generally reduced in large adipocytes of obese, insulin-resistant mice. This reduced gene expression is restored by peroxisome proliferator-activated receptor (PPAR) gamma ligands accompanied by a reduced fat cell size. To determine whether PDE3B gene expression is regulated by PPAR gamma itself, we analyzed lean PPAR gamma (+/-) mice with adipocyte size comparable to control PPAR gamma (+/+) mice. In adipocytes of PPAR gamma (+/-) mice, PDE3B mRNA and protein were both reduced to 63% of wild-type levels. Basal PDE activity tended to be decreased to 70% of wild-type levels, and, similarly, insulin-induced PDE activity was significantly decreased to 70%. Thus, PPAR gamma is required for PDE3B gene expression independent of adipocyte size.  相似文献   

18.
19.
20.
A uniquely formulated soy phospholipid, phosphatidylinositol (PI), is under development as a therapeutic agent for increasing plasma high-density lipoprotein (HDL) levels. Soy PI has been shown to increase plasma HDL and apolipoprotein A-I (apoA-I) levels in phase I human trials. Low micromolar concentrations of PI increase the secretion of apoA-I in model human hepatoma cell lines, through activation of G-protein and mitogen-activated protein (MAP) kinase pathways. Experiments were undertaken to determine the importance of the PI head group and acyl chain composition on hepatic apoA-I secretion. Phospholipids with choline and inositol head groups and one or more linoleic acid (LA) acyl chains were shown to stimulate apoA-I secretion by HepG2 cells and primary human hepatocytes. Phospholipids containing two LA groups (dilinoleoylphosphatidylcholine, DLPC) were twice as active as those with only one LA group and promoted a 4-fold stimulation in apoA-I secretion. Inhibition of cytosolic phospholipase A2 with pyrrolidine 1 (10 microM) resulted in complete attenuation of PI- and DLPC-induced apoA-I secretion. Pretreatment with the peroxisome proliferator-activated receptor alpha (PPARalpha) inhibitor MK886 (10 microM) also completely blocked PI- and DLPC-induced apoA-I secretion. Hepatic PPARalpha expression was significantly increased by both PI and DLPC. However, in contrast to that seen with the fibrate drugs, PI caused minimal inhibition of catalytic activities of cytochrome P450 and UGT1A1 enzymes. These data suggest that LA-enriched phospholipids stimulate hepatic apoA-I secretion through a MAP kinase stimulation of PPARalpha. LA-enriched phospholipids have a greater apoA-I secretory activity than the fibrate drugs and a reduced likelihood to interfere with concomitant drug therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号