首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the factor of the physiological characteristics causing the reduction of yield of soybean plants (Glycine max (L.) Merr.) by drought stress, by monitoring changes in stem diameter and pod thickness, and photosynthetic activity, partitioning of 13C-labeled photosynthate. Drought stress reduced the whole plant dry weight due to the decrease in leaf and pod dry matter accumulation; however, this stress did not have a significant effect on stem growth. Leaf photosynthesis was also severely decreased by drought stress in the early stage of stress treatment as leaf water potential decreased. Imposition of stress decreased pod thickness, but stem diameter increased. The adverse effect of drought stress on pod thickness was more evident at night than during the day. The stem diameter also shrank during the day and expanded at night, but the nocturnal increase in stem diameter during drought stress treatment was greater for stressed plants compared with well-watered controls. Drought stress significantly promoted 13C partitioning from the fed leaf to other parts of the plant; the stem was the largest beneficiary. Soluble carbohydrates accumulated in various plant parts under the influence of the stress, but starch concentration declined in all organs except the stem. These results indicated that stem growth was promoted by drought stress compared to pod growth at the early grain-filling stage.  相似文献   

2.
Tomato [Solanum lycopersicum (formerly Lycopersicon esculentum) L. cv. Momotarou] plants were grown hydroponically inside the greenhouse of Hiroshima University, Japan. The adverse effects of potassium (K) deficiency stress on the source-sink relationship during the early reproductive period was examined by withdrawing K from the rooting medium for a period of 21 d. Fruits and stem were the major sink organs for the carbon assimilates from the source. A simple non-destructive micro-morphometric technique was used to measure growth of these organs. The effect of K deficiency was studied on the apparent photosynthesis (source activity), leaf area, partitioning (13)C, sugar concentration, K content, and fruit and stem diameters of the plant. Compared with the control, K deficiency treatment severely decreased biomass of all organs. The treatment also depressed leaf photosynthesis and transport of (13)C assimilates, but the impact of stress on these activities became evident only after fruit and stem diameter expansions were down-regulated. These results suggested that K deficiency diminished sink activity in tomato plants prior to its effect on the source activity because of a direct effect on the water status of the former. The lack of demand in growth led to the accumulation of sugars in leaves and concomitant fall in photosynthetic activity. Since accumulation of K and sugars in the fruit was not affected, low K levels of the growing medium might not have affected the fruit quality. The micro-morphometric technique can be used as a reliable tool for monitoring K deficiency during fruiting of tomato. K deficiency directly hindered assimilate partitioning, and the symptoms were considered more detrimental compared with P deficiency.  相似文献   

3.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2. After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation.  相似文献   

4.
BACKGROUND AND AIMS: A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. METHODS: The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. KEY RESULTS: The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. CONCLUSIONS: By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection.  相似文献   

5.
Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO₂ concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO₂ concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.  相似文献   

6.
X. Li  K. Xu 《Photosynthetica》2014,52(1):152-156
Ginseng (Panax ginseng) is a typical perennial shade plant. Aim of this study was to investigate the effects of exogenous hormones on photosynthesis of P. ginseng. At different growth stages, the aerial parts of P. ginseng plants were cut at the stem base and they were inserted into the nutrient solutions containing different exogenous hormones. Then the leaf photosynthesis and water absorbing capacity (absorbing water mass) of the excised plants were measured. The results showed that exogenous abscisic acid (ABA) decreased significantly net photosynthetic rate (P N), stomatal conductance, transpiration rate, and absorbed water mass of excised P. ginseng at all growth stages, while both cytokinin (CTK) and indole-3-acetic acid (IAA) enhanced those parameters. Comparing different growth stages, ABA caused more severe inhibition of leaf photosynthesis at the early growth stage, while CTK and IAA showed significant enhancement of leaf photosynthesis at later growth stage. ABA reduced highly intercellular CO2 concentration of P. ginseng at the flowering and green fruit stages, but it had only a small effect at red fruit early and red fruit stages. During the early growth stage, the inhibitory effect of ABA on leaf P N might be caused mainly due to the stomatal limitation. However, the reason for this reduction was complex at the later growth stage and it included stomatal and other factors.  相似文献   

7.
为阐明施肥与猕猴桃产量、品质的关系,优化施肥配方,以猕猴桃品种‘红阳’(Actinidia chinensis‘Hongyang’)为试验材料,采用田间小区栽培方法研究了不同施肥处理对‘红阳’植株生长、叶片光合特性及果实产量的影响。研究结果显示,N、P、K任何一种元素的缺乏均会影响植株生长并降低果实产量;均衡施用N、P、K肥可以提高叶片光合作用,促进植株新梢和主干茎的生长,从而提高果实产量;如果N和K比例过大则会降低叶片气孔导度、胞间CO2浓度和净光合速率,从而减少果实产量;增施有机肥对提高果实产量效果不显著,但可以提高单果重,过量施用有机肥则会显著降低产量。本研究结果表明,均衡施用N、P、K并配施一定的有机肥(N 250 g/株、P2O5250 g/株、K2O 250 g/株、有机肥6 kg/株)能显著促进植株的生长并提高果实产量。氮、磷、钾肥与有机肥配合施用是提高猕猴桃果园养分管理的有效方法。  相似文献   

8.
Summary The gas exchange and water relations of two Sonoran Desert plants are compared during contrasting periods of water and heat stress. Photosynthesis of Acacia greggii, a winter deciduous shrub, and Cercidium microphyllum, a chlorophyllous stemmed tree, show a moderate correlation with dawn plant water potential. For both species a relationship between stomatal conductance and dawn plant water potential was not apparent, although A. greggii demonstrated a greater overall stomatal conductance. This affected a greater daytime decrease in plant water potential at all levels of water stress and suggests A. greggii is less sensitive to water stress. Our results suggest the lower limit for gross photosynthesis occurs when dawn plant water potentials are less than -44 and -31 bars for the shrub and tree species, respectively. During periods of extreme water and heat stress the photosynthetic capacity of both species is regulated more by mesophyll than stomatal conductance. However, partial stomatal closure causes plant water potential to increase during the day and exceed dawn values. During periods of minimal water and heat stress the daily course of photosynthesis parallels the change in stomatal conductance and irradiance. Maximum gross photosynthesis rates are nearly three-fold higher than the rates observed during periods of stress, with those of A. greggii generally greater than the rates observed in plants of C. microphyllum.  相似文献   

9.
The specialized physiology of leafless, stem-succulent cacti is relatively well understood. This is not true, however, for Pereskia (Cactaceae), the 17 species of leafy trees and shrubs that represent the earliest diverging lineages of the cacti. Here we report on the water relations and photosynthesis of Pereskia guamacho, a small tree of the semiarid scrubland of Venezuela's Caribbean coast. Sapwood-specific xylem conductivity (Ksp) is low when compared to other vessel-bearing trees of tropical dry systems, but leaf-specific xylem conductivity is relatively high due to the high Huber value afforded by P. guamacho's short shoot architecture. P. guamacho xylem is not particularly vulnerable to drought-induced cavitation, especially considering the high leaf water potentials maintained year round. This is confirmed by the lack of significant variation exhibited in Ksp between wet and dry seasons. In the rainy season, P. guamacho exhibited C3-like patterns of stomatal conductance, but during a prolonged drought we documented nocturnal stomatal opening with a concomitant accumulation of titratable acid in leaves. This suggests that P. guamacho can perform drought-induced crassulacean acid metabolism (CAM photosynthesis), although delta 13C values imply that most carbon is assimilated via the C3 pathway. P. guamacho leaves display very low stomatal densities, and maximum stomatal conductance is low whether stomata open during the day or night. We conclude that leaf performance is not limited by stem hydraulic capacity in this species, and that water use is conservative and tightly regulated at the leaf level.  相似文献   

10.
Changes in plant growth, photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean [Glycine max (L.) Merr.] plants under drought stress were studied. Total plant dry mass was reduced by 30 % compared to well-watered control plants. Leaf water potential was slightly decreased by water stress. Water stress induced daytime shrinkage and reduced night-time expansion of stem. Photosynthetic rate, stomatal conductance and transpiration rate were significantly declined by water stress, while the intercellular CO2 concentration was changed only slightly at the initiation of stress treatment. The maximum photochemical efficiency of photosystem 2 and apparent photosynthetic electron transport rate were not changed by water stress.  相似文献   

11.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

12.
The effect of a cold night on photosynthesis in herbaceous chilling-sensitive crops, like tomato, has been extensively studied and is well characterized. This investigation examined the behaviour of the sub-tropical fruit tree, mango, to enable comparison with these well-studied systems. Unlike tomato, chilling between 5 degrees C and 7 degrees C overnight produced no significant inhibition of light-saturated CO(2) assimilation (A:) during the first hours following rewarming, measured either under controlled environment conditions or in the field. By midday, however, there was a substantial decline in A:, which could not be attributed to photoinhibition of PSII, but rather was associated with an increase in stomatal limitation of A: and lower Rubisco activity. Overnight chilling of tomato can cause severe disruption in the circadian regulation of key photosynthetic enzymes and is considered to be a major factor underlying the dysfunction of photosynthesis in chilling-sensitive herbaceous plants. Examination of the gas exchange of mango leaves maintained under constant conditions for 2 d, demonstrated that large depressions in A: during the subjective night were primarily the result of stomatal closure. Chilling did not disrupt the ability of mango leaves to produce a circadian rhythm in stomatal conductance. Rather, the midday increase in stomatal limitation of A: appeared to be the result of altered guard cell sensitivity to CO(2) following the dark chill.  相似文献   

13.
采用Granier热消散探针测定了马占相思(Acacia mangium)的树干液流,结合Li-6400光合测定系统测定的夜间叶片气孔导度和蒸腾,将夜间液流区分为夜间树干水分补充和叶片气孔蒸腾。叶片的蒸腾作用微弱,因此,夜间液流主要用于补充贮水部位的水分亏缺。马占相思夜间水分补充量年内和年际的变化不明显,树形特征的差异是解释夜间水分补充量变化的重要因子,夜间水分补充量对于整树蒸腾量的贡献因季节和树木径级的不同而有明显变化,但对整树总蒸腾量计算造成的误差可以忽略。  相似文献   

14.
An empirical modeling technique was developed for depicting quantitatively the transport and partitioning of photosynthetically fixed C and symbiotically fixed N during 10-day intervals of a 40-day period in the growth of nodulated plants of white lupin (Lupinus albus L. cv. Ultra). Model construction utilized data for C and N consumption of plant parts and C:N weight ratios of the xylem and phloem fluids serving specific plant organs. Formulas were derived from calculating the net transport of C and N between plant parts in xylem and phloem. The models provided quantitative information on the dependence of growing organs on xylem and phloem for their supply of C and N, the cycling of N through leaflets and of C through nodules, the extent of direct incorporation of fixed N into growing nodules, and the involvement of N from shoot translocate in the nutrition of the nodulated root. Stem plus petioles abstracted considerably more N from xylem than expected from their transpirational activity. Xylem to phloem transfer of recently fixed N in mature stem and petioles was substantiated by the models, being depicted as a device for dispensing N to growing parts of the shoot extra to that attracted transpirationally in xylem or received as translocate from leaflets.  相似文献   

15.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   

16.
Summary Responses to humidity of net photosynthesis and leaf conductance of single attached leaves were examined in populations of herbs from wet soil sites in Beltsville, Maryland and Davis, California, USA. Plants were grown in controlled environments under three conditions which differed in the magnitude of the day-night temperature difference and in daytime air saturation deficit. No population differences in response were found in Abutilon theophrasti. In Amaranthus hybridus stomatal conductance and net photosynthesis were more reduced by increasing leaf to air water vapor pressure difference (VPD) in the population from Beltsville, but only for the growth condition with a constant 25°C temperature. In Chenopodium album, stomatal conductance was more sensitive to VPD in the population from Davis, but only for the growth condition with 28/22°C day/night temperatures. Population differences in the sensitivity to VPD of leaf conductance were associated with differences in leaf area to root weight ratio. The relative reduction of net photosynthesis as VPD increased was greater than, equal to, or less than the relative decrease in substomatal carbon dioxide partial pressure. The pattern depended on species, and on growth condition. From these results one can not conclude that environmental humidity has been a strong selective force in determining sensitivity to humidity of stomatal conductance.  相似文献   

17.
Abstract The effect of freezing night temperatures on net photosynthesis, stomatal conductance, and internal CO2 concentration was investigated in unhardened seedlings of Engelmann spruce. Exposure to – 2.5°C in the dark for 10 h caused a slight and reversible reduction in gas-exchange parameters on the following days. Substantial and irreversible inhibition of photosynthesis occurred after exposure to -4°C or –5°C. Despite a parallel decline in stomatal conductance and net photosynthesis, exposure to a hard freeze caused a decrease in the stomatal limitation to gas exchange. Hard-freeze conditions (less than – 4°C) also caused a decrease in carboxylation efficiency and apparent quantum yield, indicating a freeze-induced failure of the dark reactions and electron transport. There was no significant difference in the photosynthetic response to freezing temperatures in different elevational populations of spruce, although acclimatory adjustments were observed. Gas exchange in seedlings grown under cool conditions (14°C day/9°C night) was less affected and recovered more rapidly after exposure to a hard freeze than in seedlings grown under warm conditions (24°C day/19°C night).  相似文献   

18.
The distribution of carbon (C) into whole grapevine fruiting cuttings was investigated during flower development to determine the relative contribution of inflorescence and leaf photoassimilates in the total C balance and to investigate their partitioning towards other plant organs. A (13)C labelling procedure was used to label C photoassimilates by leaves and inflorescences in grapevine. Investigations were carried out at various stages of flower/berry development, from separated cluster to fruit set, using grapevine fruiting cuttings with four leaves (Vitis vinifera L. cv. Chardonnay). This is the first study reporting that, during its development, (i) the carbon needs of the inflorescence were met by both leaf and inflorescence photosynthesis, and (ii) the inflorescence amazingly participated significantly to the total C balance of grapevine cuttings by redistributing an important part of its own assimilates to other plant organs. With regard to flowering, 29% of C assimilated by the inflorescence remained in the inflorescence, while partitioning towards the stem reached 42% and, as a lower proportion, 15% in leaves, and 14% in roots.  相似文献   

19.
The effects of water stress (drought) on the pattern of photosynthesisin Sedum telephium have been determined. Well-watered plantsexhibit a weak-CAM pattern, with substantial CO2 fixation inthe day, a low level of CO2 fixation at night, high daytimestomatal conductance with a lower conductance at night, andno diurnal fluctuation in acid content. Imposition of water-stress causes a switch from weak-CAM toa full-CAM mode of photosynthesis, as indicated by cessationof daytime CO2 fixation, a marked increase in night-time CO2fixation, very low daytime stomatal conductance, increased night-timeconductance and significant diurnal fluctuations in acid content. Sedum telephium, CAM, CO2 fixation, drought, malate, photosynthesis, water stress  相似文献   

20.

Background and Aims

Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown.

Methods

Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring.

Key Results

Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature.

Conclusions

In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号