首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD), the major dementing disorder of the elderly, is associated with cholinergic neuronal loss and decreased activity of choline acetyl-transferase (CAT). Previous biophysical studies had suggested an altered conformation of membrane proteins in AD erythrocyte ghosts. Since erythrocytes have a choline transport system and cholinergic neurons are implicated in AD, the present experiments were undertaken to determine if the efflux rate of [14C]choline was altered in AD erythrocytes. The mean efflux rate constant was highly significantly increased (P<0.01) by greater than 25% in 9 drug-free AD patients compared to 9 sex-matched, drug-free controls of similar age. These results are discussed in terms of potential molecular mechanisms to account for cholinergic neuronal loss in AD.  相似文献   

2.
The membrane fluidity of platelet and erythrocyte membranes in 10 Alzheimer's disease patients and 9 age-matched controls was studied. The platelet membranes of patients with Alzheimer's disease were found to be significantly more fluid than those of controls (p<0.02). However, erythrocyte membranes of Alzheimer patients were less fluid (more viscous) than those of controls (p<0.05). On further investigation of platelet and erythrocyte membranes obtained from healthy volunteers, the fluidity was found to change with increasing aluminium concentrations. When aluminium ammonium sulphate (0.01–10 M) was added to membrane suspensions, the fluidity of platelet membranes was increased, whereas the fluidity of erythrocyte membranes was decreased (i.e. the microviscosity was increased).  相似文献   

3.
A sensitive chemiluminescence method for assay of choline which has been developed for analysis of erythrocyte and plasma levels of choline is reported here. This method includes a charcoal purification step which yields consistent results with plasma and erythrocyte extracts. Further, choline derived from membrane phosphatidylcholine may also be measured by an extension of this method following digestion with phospholipase D. This method has been used to study abnormal levels of erythrocyte choline that occur in cluster headache patients compared to control subjects and migraine patients. In addition, the time course of changes in plasma and erythrocyte choline following a fatty meal have been monitored. Plasma choline levels rise to a maximum between 1 and 3 h after the meal and this is followed by a rise in erythrocyte choline levels which are maximal 3 h after the meal.  相似文献   

4.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

5.
Presynaptic Cholinergic Dysfunction in Patients with Dementia   总被引:23,自引:10,他引:13  
Abstract: Indices of presynaptic cholinergic nerve endings were assayed in neocortical biopsy samples from patients with presenile dementia. For those patients in whom Alzheimer's disease was histologically confirmed, [14C]acetylcholine synthesis, choline acetyltransferase activity and choline uptake were all found to be markedly reduced (at least 40%) below mean control values. The changes occurred in samples from both the frontal and temporal lobes and for [14C]acetylcholine synthesis the decrease was similar under conditions of high and low neuronal activity (as assessed by incubations in 31 mM and 5 mM K+ respectively). Samples from other demented patients, in whom the histological features of Alzheimer's disease were not detected, produced values for all three biochemical parameters which were similar to controls. For the total group of patients with presenile dementia there were correlations between values for the three markers of presynaptic cholinergic nerve endings suggestive of a loss of functional activity at these sites in Alzheimer's disease.  相似文献   

6.
Human dental fibroblasts transport choline actively. This transport is inhibitable by hemicholinium-3. In this paper, choline transport into fibroblasts of normal donors (four cell lines) and into those of Alzheimer victims (four cell lines, age and sex matched to the normals) is accelerated by methylated xanthines, nicotine, and dexamethasone. At a caffeine concentration of 10 M the stimulation of choline transport into normal cells averages 128% and into Alzheimer donor cells, 45%. 1 M Dexamethasone stimulates choline influx by 86% in normal cells and 36% in Alzheimer cells. Nicotine enhances choline transport by 35% in normal cells and by 16% in Alzheimer cells. The implication is that if Alzheimer's disease is a cholinergic disorder, it may be amenable to transport-directed chemotherapies.Special issue dedicated to Dr. Santiago Grisolia  相似文献   

7.
Galanin is a recently isolated neuropeptide that is of particular interest in dementing disorders because of its known colocalization with choline acetyltransferase in magnocellular neurons of the basal nucleus of Meynert. These neurons degenerate in Alzheimer's disease, and there is a corresponding deficiency of cortical choline acetyltransferase activity. In the present study, galanin-like immunoreactivity was measured in the postmortem cerebral cortex and hippocampus of 10 controls and 14 patients who had had Alzheimer's disease. Significant reductions of choline acetyltransferase activity (50-60%) were found in all regions examined; however, there was no significant effect on concentrations of galanin-like immunoreactivity. Similar measurements were made in postmortem tissues of 12 control and 13 demented Parkinsonian patients who had had Alzheimer-type cortical pathology. Choline acetyltransferase activity was again significantly decreased in all regions examined but there were no significant reductions in galanin-like immunoreactivity. Experimental lesions of the fornix in rats produced parallel significantly correlated reductions of both choline acetyltransferase activity and galanin-like immunoreactivity in the hippocampus. Galanin-like immunoreactivity in the human hypothalamus consisted of two molecular-weight species on gel-permeation chromatography, and two forms were resolved by reverse-phase HPLC. The paradoxical preservation of galanin-like immunoreactivity, despite depletion of the activity of choline acetyltransferase, with which it is colocalized, is as yet unexplained. Recent studies have shown that galanin inhibits both acetylcholine release in the hippocampus and memory acquisition; therefore, preserved galanin may exacerbate the cholinergic and cognitive deficits that accompany dementia.  相似文献   

8.
Choline transport for phospholipid synthesis   总被引:5,自引:0,他引:5  
Choline is an essential nutrient for all cells because it plays a role in the synthesis of the membrane phospholipid components of the cell membranes, as a methyl-group donor in methionine metabolism as well as in the synthesis of the neurotransmitter acetylcholine. Choline deficiency affects the expression of genes involved in cell proliferation, differentiation, and apoptosis, and it has been associated with liver dysfunction and cancer. Abnormal choline transport and metabolism have been implicated in a number of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therefore, the study of choline transport and the characteristics of choline transporters are of central importance to understanding the mechanisms that underlie membrane integrity and cell signaling in such disorders. Kinetic studies with radiolabeled choline and inhibitors distinguish three systems for choline transport: (i) low-affinity facilitated diffusion, (ii) high-affinity, Na+-dependent transport, and (iii) intermediate-affinity, Na+-independent transport. It is only recently, however, that the proteins having transport characteristics of at least one of these systems have been identified. They include (i) polyspecific organic cation transporters (OCTs) with low affinity for choline, (ii) high-affinity choline transporters (CHT1s), and (iii) intermediate-affinity choline transporter-like (CTL1) proteins. CHT1 and CTL1 but not OCT transporters are selectively inhibited with hemicholinium-3 and essentially display characteristics of specialized transporters for targeted choline metabolism. CHT1 is abundant in neurons and almost exclusively supplies choline for acetyl-choline synthesis. The focus here is more on newly-discovered CTL1 choline transporters. They are expressed in different organisms and cell types, apparently not for the biosynthesis of acetylcholine but for the production of the most abundant metabolite of choline, the membrane lipid phosphatidylcholine.  相似文献   

9.
Uptake of [14C]choline upon hyperosmotic stress of exponential-phase Staphylococcus aureus cultures in a complex medium occurred after a delay of 2.5 to 3.5 h. This uptake could be prevented by chloramphenicol, suggesting that it occurred via an inducible transport system. Radioactivity from [14C]choline was accumulated as [14C]glycine betaine. However, neither choline nor glycine betaine could act as the major carbon and energy source for the organism, suggesting that choline was not metabolized beyond glycine betaine. Assay of choline transport activity in cells grown under different conditions in defined media revealed that osmotic stress was mainly responsible for the induction, but choline gave a further increase in induction. The system was not induced in anaerobically grown cells. Choline transport activity was repressed by glycine betaine and proline betaine, suggesting that these compounds are corepressors. Choline transport activity was not induced in cells osmotically stressed by 1 M potassium phosphate or 0.5 M sodium phosphate, but was induced in cells grown in low-phosphate medium in the absence of osmotic stress. This suggests that there is a connection between the phosphate and osmotic stress regulons. Choline transport was energy and Na+ dependent and had a Km of 46 microM and a maximum rate of transport (Vmax) of 54 nmol/min/mg (dry weight). The results of competition studies suggested that N-methyl and an alcohol group or aldehyde groups at the ends of the molecule were important in its recognition by the system. Glycine betaine was not a highly effective competitor, suggesting that its transport system and the choline transport system were distinct from each other. Choline transport was highly susceptible to a variety of inhibitors, which may be related to the greater dependence on respiratory metabolism of cells grown in the presence of high NaC1 concentrations.  相似文献   

10.
Osmoregulation in Rhodobacter sphaeroides.   总被引:5,自引:5,他引:0       下载免费PDF全文
Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobic conditions. Under these conditions choline was converted via an oxygen-dependent pathway to betaine, which was not further metabolized. The initial rates of choline uptake by cells grown in media with low and high osmolarities were measured over a wide range of concentrations (1.9 microM to 2.0 mM). Only one kinetically distinguishable choline transport system could be detected. Kt values of 2.4 and 3.0 microM and maximal rates of choline uptake (Vmax) of 5.4 and 4.2 nmol of choline/min.mg of protein were found in cells grown in the minimal medium without or with 0.3 M NaCl, respectively. Choline transport was not inhibited by a 25-fold excess of L-proline or betaine. Only one kinetically distinguishable betaine transport system was found in cells grown in the low-osmolarity minimal medium as well as in a high-osmolarity medium containing 0.3 M NaCl. In cells grown and assayed in the absence of NaCl, betaine transport occurred with a Kt of 15.1 microM and a Vmax of 3.2 nmol/min . mg of protein, whereas in cells that were grown and assayed in the presence of 0.3 M NaCl, the corresponding values were 18.2 microM and 9.2 nmol of betaine/min . mg of protein. This system was also able to transport L-proline, but with a lower affinity than that for betaine. The addition of choline of betaine to the growth medium did not result in the induction of additional transport systems.  相似文献   

11.
Behavioural symptoms of Alzheimer's disease, such as aggression, may determine the care patients required. Most postmortem neurochemical studies have been of institutionalized patients and conclusions drawn from these may not be valid for all patients. We have shown that serotonin 2 receptors are not lost from 12 of the 13 areas of cerebral cortex examined in the patients assessed to be free of aggressive symptoms. This has been interpreted as representing the relative preservation of cortical interneurones. In contrast choline acetyltransferase activity was reduced in all areas whereas serotonin content was reduced in only 2 of the 4 areas examined.Abbreviations AD Alzheimer's disease - ChAT choline acetyltransferase activity - GABA gamma-amino butyric acid - 5-HT serotonin - SLIR somatostatin-like immuno-reactivity Special issue dedicated to Dr. Alan N. Davison.  相似文献   

12.
M L Ancelin  H J Vial 《FEBS letters》1986,202(2):217-223
In Plasmodium falciparum-infected erythrocyte homogenates, the specific activity of ethanolamine kinase (7.6 +/- 1.4 nmol phosphoethanolamine/10(7) infected cells per h) was higher than choline kinase specific activity (1.9 +/- 0.2 nmol phosphocholine/10(7) infected cells per h). The Km of choline kinase for choline was 79 +/- 20 microM, and ethanolamine was a weak competitive inhibitor of the reaction (Ki = 92 mM). Ethanolamine kinase had a Km for ethanolamine of 188 +/- 19 microM, and choline was a competitive inhibitor of ethanolamine kinase with a very high Ki of 268 mM. Hemicholinium 3 inhibited choline kinase activity, but had no effect on ethanolamine kinase activity. In contrast, D-2-amino-1-butanol selectively inhibited ethanolamine kinase activity. Furthermore, when the two enzymes were subjected to heat inactivation, 85% of the choline kinase activity was destroyed after 5 min at 50 degrees C, whereas ethanolamine kinase activity was not altered. Our results indicate that the phosphorylation of choline and ethanolamine was catalyzed by two distinct enzymes. The presence of a de novo phosphatidylethanolamine Kennedy pathway in P. falciparum contributes to the bewildering variety of phospholipid biosynthetic pathways in this parasitic organism.  相似文献   

13.
We measured the activities of the cholinergic marker enzymes choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in autopsied brains of seven infants (age range 3 months to 1 year) with Down's syndrome (DS), a disorder in which virtually all individuals will develop by middle age the neuropathological changes of Alzheimer's disease accompanied by a marked brain cholinergic reduction. When compared with age-matched controls cholinergic enzyme activity was normal in all brain regions of the individuals with infant DS with the exception of above-normal activity in the putamen (ChAT) and the occipital cortex (AChE). Our neurochemical observations suggest that DS individuals begin life with a normal complement of brain cholinergic neurons. This opens the possibility of early therapeutic intervention to prevent the development of brain cholinergic changes in patients with DS.  相似文献   

14.
The uptake of [14C]choline by a suspension of exponential-phase Aphanothece halophytica under various conditions has been studied. Salt stress was found to enhance the uptake of choline. The kinetics of choline transport followed the Michaelis-Menten relationship with apparent K(m) values of 272 and 286 microM, maximum rates of transport (V(max)) of 18 and 37 nmol/min/mg protein for unstressed and salt-stressed cells, respectively. Choline uptake under salt stress was significantly reduced in chloramphenicol-treated cells, suggesting that the activation by salt stress occurred via an inducible transport system. This was corroborated by the existence of the periplasmic choline binding protein, whose content was higher in cells grown under salt-stress condition. Exogenously provided choline significantly increased the growth rate of cells grown under salt stress, although less efficiently than glycine betaine. The presence of 1 mM choline in the growth medium conferred tolerance to high salinity on A. halophytica with the maintenance of high growth up to 1.5 M NaCl. The uptake of choline was Na(+)-dependent, sensitive to various metabolic inhibitors as well as thiol-reactive agents. The results of competition studies suggested that N-methyl on one end of molecule and on the other end either an aldehyde, an alcohol or a neutral group were important features for substrate recognition.  相似文献   

15.
To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin:cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C), n = 18, 28.6 years, SD 5.2, 50.1 ml.kg-1.min-1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T), n = 18, 31.4 years, SD 8.8, 65.0 ml.kg-1.min-1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol.ml-1.h-1, SD 16.7 vs T 65.0 nmol.ml-1.h-1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol.ml-1.h-1, SD 23.5, +48.6%, P less than 0.001; (T) 83.5 nmol.ml-1.h-1, SD 24.3, +29.1%, P less than 0.01. Neither the pre nor the postexercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.  相似文献   

16.
Harris CD  Ermak G  Davies KJ 《The FEBS journal》2007,274(7):1715-1724
At least two different isoforms of RCAN1 mRNA are expressed in neuronal cells in normal human brain. Although RCAN1 mRNA is elevated in brain regions affected by Alzheimer's disease, it is not known whether the disease affects neuronal RCAN1, or if other cell types (e.g. astrocytes or microglia) are affected. It is also unknown how many protein isoforms are expressed in human brain and whether RCAN1 protein is overexpressed in Alzheimer's disease. We explored the expression of both RCAN1-1 and RCAN1-4 mRNA isoforms in various cell types in normal and Alzheimer's disease postmortem samples, using the combined technique of immunohistochemistry and in situ hybridization. We found that both exon 1 and exon 4 are predominantly expressed in neuronal cells, and no significant expression of either of the exons was observed in astocytes or microglial cells. This was true in both normal and Alzheimer's disease brain sections. We also demonstrate that RCAN1-1 mRNA levels are approximately two-fold higher in neurons from Alzheimer's disease patients versus non-Alzheimer's disease controls. Using western blotting, we now show that there are three RCAN1 protein isoforms expressed in human brain: RCAN1-1L, RCAN1-1S, and RCAN1-4. We have determined that RCAN1-1L is expressed at twice the level of RCAN1-4, and that there is very minor expression of RCAN1-1S. We also found that the RCAN1-1L protein is overexpressed in Alzheimer's disease patients, whereas RCAN1-4 is not. From these results, we conclude that RCAN1-1 may play a role in Alzheimer's disease, whereas RCAN1-4 may serve another purpose.  相似文献   

17.
Abstract: Galanin is a peptide that is associated with cholinergic neurons of the basal forebrain and, thus, of interest for the neuropathology of Alzheimer's disease. In the present study, human galanin-like immunoreactivity was measured in postmortem human cerebral cortical tissues by using a homologous radioimmunoassay. In an initial study, six cerebral cortical regions were evaluated from nine elderly controls, 13 neuropathologically verified Alzheimer's disease patients, and 19 elderly schizophrenics. A significant 65% increase in galanin was found in frontal cortex Brodmann area 8 of Alzheimer's disease patients compared with controls. In contrast, cerebral cortical tissues from elderly schizophrenics were not different from those from elderly controls in any region. In a second study, 10 cerebral cortical regions were evaluated from 50 neuropathologically verified Alzheimer's disease patients and nine elderly controls. Concentrations of galanin were increased significantly 26–61% in six of 10 cerebral cortical regions examined (Brodmann areas F8, F44, T20, T21, T36, and P22). Purification of brain extracts by size-exclusion Sephadex G-50 chromatography revealed that human galanin-like immunoreactivity eluted in two peaks of different molecular weights. These studies reveal increased concentrations of galanin in the cerebral cortex of Alzheimer's disease, similar to previous findings in basal forebrain tissue. Because galanin inhibits cholinergic neurotransmission, these findings may have important implications in the understanding of Alzheimer's disease neuropathology and associated cognitive deficits.  相似文献   

18.
Krebs II ascites cells have a low affinity uptake system for choline (Km = 36 μM, Vm = 76 nmol/min per 2·108 cells). Choline entered the cells and was rapidly phosphorylated (95% of total intracellular soluble label). Trans acceleration of labeled choline from cells preloaded with radiolabeled choline and postincubated in the presence of unlabeled choline indicates that choline transport in Krebs II ascites cells is carrier mediated. Ethanolamine competed for the choline carrier. The uptake was reduced by hemicholinium-3, iodoacetamide and ouabain. The mechanism of choline transport in Krebs Ii ascites cells is in agreement with a linear transport model.  相似文献   

19.
The DSCR1 (Adapt78) gene was independently discovered as a resident of the "Down syndrome candidate region"and as an "adaptive response"shock or stress gene that is transiently induced during oxidative stress. Recently the DSCR1 (Adapt78) gene product was discovered to be an inhibitor of the serine/threonine phosphatase, calcineurin, and its signaling pathways. We hypothesized that DSCR1 (Adapt78) might also be involved in the development of Alzheimer's disease. To address this question we first studied DSCR1 (Adapt78) in multiple human tissues and found significant expression in brain, spinal cord, kidney, liver, mammary gland, skeletal muscle, and heart. Within the brain DSCR1 (Adapt78) is predominantly expressed in neurons within the cerebral cortex, hippocampus, substantia nigra, thalamus, and medulla oblongata. When we compared DSCR1 (Adapt78) mRNA expression in post-mortem brain samples from Alzheimer's disease patients and individuals who had died with no Alzheimer's diagnosis, we found that DSCR1 (Adapt78) mRNA levels were about twice as high in age-matched Alzheimer's patients as in controls. DSCR1 (Adapt78) mRNA levels were actually three times higher in patients with extensive neurofibrillary tangles (a hallmark of Alzheimer's disease) than in controls. In comparison, post-mortem brain samples from Down syndrome patients (who suffer Alzheimer's symptoms) also exhibited DSCR1 (Adapt78) mRNA levels two to three times higher than controls. Using a cell culture model we discovered that the amyloid beta(1-42) peptide, which is a major component of senile plaques in Alzheimer's, can directly induce increased expression of DSCR1 (Adapt78). Our findings associate DSCR1 (Adapt78) with such major hallmarks of Alzheimer's disease as amyloid protein, senile plaques, and neurofibrillary tangles.  相似文献   

20.
The interaction of pharmacological agents potentially useful in Alzheimer's disease, 9-amino-1,2,3,4-tetrahydroacridine (THA or tacrine) and its major metabolite velnacrine (or HP-029), along with related compounds with cytoskeletal proteins in human erythrocyte membrane was investigated using electron paramagnetic resonance spin labeling techniques. The results suggest that: (1) the position of the positive charge of tacrine may be important in the mechanism of its interaction with the membrane cytoskeleton; (2) like tacrine, velnacrine also strengthens cytoskeletal protein-protein interactions in erythrocyte membranes, but appears to be only about half as potent as tacrine. These results are discussed with relevance to therapeutic use of these agents in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号