首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble extracts of Methylococcus capsulatus (Bath), obtained by centrifugation of crude extracts at 160000g for 1h, catalyse the NAD(P)H- and O2-dependent disappearance of bromomethane, and also the formation of methanol from methane. Soluble methane mono-oxygenase is not inhibited by chelating agents or by most electron-transport inhibitors, and is a multicomponent enzyme.  相似文献   

2.
1. A mono-oxygenase, which oxidizes trimethylamine and other tertiary amines bearing methyl or ethyl groups, was partially purified sixfold from Pseudomonas aminovorans grown on trimethylamine as sole carbon source. 2. The preferred electron donor was NADPH. The enzyme had a pH optimum of 8.0-9.4 for trimethylamine oxidation, and 8.8-9.2 for dimethylamine oxidation. 3. The oxidation product of trimethylamine was shown to be trimethylamine N-oxide. Other tertiary amines were probably also converted into N-oxides. 4. The enzyme also oxidized secondary amines. 5. The oxidation of trimethylamine was only slightly inhibited by CO and not at all by KCN or proadifen hydrochloride (SKF 525-A), but was inhibited by trimethylsulphonium chloride, tetramethylammonium chloride, 2,4-dichloro-6-phenylphenoxyethylamine (Lilly 53325) and its NN-diethyl derivative (Lilly 18947). 6. The oxidation of dimethylamine showed a similar response to inhibitors and a parallel loss in activity on heating at 35 degrees C. 7. The activities of the trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase and the secondary-amine mono-oxygenase increased severalfold during adaptation of succinate-grown bacteria to growth on trimethylamine, and the trimethylamine mono-oxygenase was the first enzyme to show an increase in activity. It is concluded that all three enzymes are involved in growth on trimethylamine by this organism.  相似文献   

3.
1. The roles of the three protein components of soluble methane mono-oxygenase were investigated by the use of rapid-reaction techniques. The transfer of electrons through the enzyme complex from NADH to methane/O2 was also investigated. 2. Electron transfer from protein C, the reductase component, to protein A, the hydroxylase component, was demonstrated. Protein C was shown to undergo a three-electron--one-electron catalytic cycle. The interaction of protein C with NADH was investigated. Reduction of protein C was shown to be rapid, and a charge-transfer interaction between reduced FAD and NAD+ was observed; this intermediate was also found in static titration experiments. Thus the binding of NADH, the reduction of protein C and the intramolecular transfer of electrons through protein C were shown to be much more rapid than the turnover rate of methane mono-oxygenase. 3. The rate of transfer of electrons from protein C to protein A was shown to be lower than the reduction of protein C but higher than the turnover rate of methane mono-oxygenase. Association of the proteins was not rate-limiting. The amount of protein A present in the system had a small effect on the rate of reduction of protein C, indicating some co-operativity between the two proteins. 4. Protein B was shown to prevent electron transfer between protein C and protein A in the absence of methane. On addition of saturating concentrations of methane electron transfer was restored. With saturating concentrations of methane and O2 the observed rate constant for the conversion of methane into methanol was 0.26 s-1 at 18 degrees C. 5. By the use of [2H4]methane it was demonstrated that C-H-bond breakage is likely to be the rate-limiting step in the conversion of methane into methanol.  相似文献   

4.
Acetylene brings about a progressive inactivation of ammonia mono-oxygenase, the ammonia-oxidizing enzyme in Nitrosomonas europaea. High NH4+ ion concentrations were protective. The inactivation followed first-order kinetics, with a rate constant of 1.5 min-1 at saturating concentrations of acetylene. If acetylene was added in the absence of O2, the cells remained active until O2 was re-introduced. A protective effect was also demonstrated with thiourea, a reversible non-competitive inhibitor of ammonia oxidation. Incubation of cells with [14C]acetylene was found to cause labelling of a single membrane polypeptide. This ran on dodecyl sulphate/polyacrylamide-gel electrophoresis with an Mr value of 28 000. It is concluded that acetylene is a suicide substrate for the mono-oxygenase. The labelling experiment provides the first identification of a constituent polypeptide of ammonia mono-oxygenase.  相似文献   

5.
The photochemical generation of excited states of oxygen such as the superoxide ion(O-2) and singlet oxygen (1o2) by the mild illumination of culture medium containing riboflavin induces benzo(alpha)pyrene mono-oxygenase in 3 different cell lines derived from rat liver. Similar rates of O-2 generation can be produced by the action of xanthine oxidase on xanthine yet this system does not induce the mono-oxygenase. This result confirms that the mono-oxygenase induction is not mediated by O-2 is not mediated by O-2 and that 1O2 is the most likely candidate for stimulating the mono-oxygenase activity.  相似文献   

6.
1. Ion-exchange chromatography resolves the methane mono-oxygenase from soluble extracts of Methylococcus capsulatus (Bath) into three fractions. 2. Fractions A and B are comparatively stable at 0 degrees C, whereas fraction C is very unstable unless kept in the presence of sodium thioglycollate (1-10 mM) or dithiothreitol (5-10mM). 3. The active component from fraction C was purified some 80-fold. 4. Purified component C has mol. wt. 42000. Its solutions are yellow with absorption maxima at 270 and 465 nm and a shoulder at 395 nm. The 465 nm peak is abolished by reduction with NADH or sodium dithionite, or by photoreduction in the presence of EDTA. A new spectral species, probably a neutral flavin semiquinone, is observed on partial reduction of component C. 5. No copper was detected in samples of purified component C, but the protein contains 1.3-1.5 atoms of iron/molecule. 6. On boiling, component C releases a yellow-green fluorescent material that has been identified as FAD from its absorption and fluorescence spectra and by t.l.c. 7. Component C contains 1 mol of FAD/mol of protein.  相似文献   

7.
Yellow-pigmented bacteria showing typical characteristics of Xanthobacter spp. were isolated from enrichments with propene and 1-butene, using classical techniques. The generation time for growth on propene and 1-butene of these bacteria ranged from 5 to 7h. A NADH-dependent mono-oxygenase was identified in cell-free extract of Xanthobacter Py2. This mono-oxygenase was not influenced by potential inhibitors tested indicating that propene mono-oxygenase is different from other hydrocarbon mono-oxygenases described until now. Nitrogenase activity could be measured using the acetylene reduction assay with propene as energy source, because acetylene did not inhibit the mono-oxygenase activity.  相似文献   

8.
Summary The oxidation of propene by resting-cells of ethene-grown Mycobacterium E3 was inactivated by 1,2-epoxypropane. Inactivation increased with increasing epoxide concentrations with 50% inactivation at approximately 30 mM epoxide. Other lower epoxides as epoxyethane and 1,2-epoxybutane also inactivated oxidation of propene as well as of other alkenes. Propene oxidation by resting-cells of ethane-grown Mycobacterium E20 and resting-cells of methane-grown Methylosinus trichosporium OB3b was inactivated for 50% at much lower 1,2-epoxypropane concentrations of approximately 1 and 3 mM respectively. It was demonstrated that in vivo the predominant effect of 1,2-epoxypropane was on the epoxidizing enzyme, i.e. alkene mono-oxygenase (strain E3), alkane mono-oxygenase (strain E20) and methane mono-oxygenase (methylotroph) and that the effect of the epoxide on the alkene mono-oxygenase was irreversible.  相似文献   

9.
The enzyme catalysing the hydroxylation of ecdysone to 20-hydroxyecdysone, ecdysone 20-mono-oxygenase (EC 1.14.99.22), was investigated in the Malpighian tubules of fifth-instar locusts, Schistocerca gregaria. Enzyme activity was optimal at 35 degrees C and pH 6.8-8.0. Under these conditions the mono-oxygenase exhibited an apparent Km for ecdysone of 7.1 X 10(-7) M, a maximal specific activity of 1.1 nmol/h per mg of protein and was competitively inhibited by 20-hydroxyecdysone with an apparent Ki of 6.3 X 10(-7) M. Enzyme activity was decreased in the presence of Ca2+, Mg2+, EDTA and non-ionic detergents. The Malpighian tubule ecdysone 20-mono-oxygenase was localized primarily in the subcellular fraction sedimenting at 7500 g and, on the basis of marker enzyme profiles, was assigned mainly to the mitochondria. NADPH was required for activity, although addition of NADH together with NADPH had a synergistic effect. NADP+-dependent isocitrate dehydrogenase (EC 1.1.1.42) and an energy-dependent NAD(P) transhydrogenase (EC 1.6.1.1.) appeared to be the major sources of reducing equivalents, with the contribution from the 'malic enzyme' (EC 1.1.1.40) being less important. The monooxygenase was characterized as a cytochrome P-450-containing mixed-function oxidase from the inhibition patterns with metyrapone, CO and cyanide; CO inhibition was reversible with monochromatic light at 450 nm. However, the ecdysone 20-mono-oxygenase shows much lower sensitivity to CO inhibition and to photodissociation of the CO-inhibited complex than do vertebrate cytochrome P-450-dependent hydroxylation systems. The concentration of cytochrome P-450 in the Malpighian tubule mitochondria was 30 pmol/mg of protein. The properties of the mono-oxygenase are discussed in relation to hydroxylation enzymes from other sources.  相似文献   

10.
1. The photochemical generation of excited states of oxygen in liver cell culture by the mild ilumination of culture medium containing riboflavin, results in stimulation of benzo[a]pyrene 3-mono-oxygenase, a cytochrome P-450-linked mono-oxygenase. 2. The same large increase in mono-oxygenase activity was found when medium containing riboflavin was illuminated in the absence of cells and then stored in the dark for 24h before contact with the cells. From this it may be inferred that stimulation is due to the formation of a stable inducer in the culture medium. Further experiments indicate that the stable inducer is due to the photo-oxidation of an amino acid. 3. Evidence that singlet oxygen is responsible for initiating the stimulation of the mono-oxygenase is based on the use of molecules that scavenge particular active oxygen species. Of all the scavengers tested, only those that scavenge single oxygen inhibited the stimulation. 4. A hypothesis is developed to relate the stimulation of the mono-oxygenase by singlet oxygen in cultured cells to the regulation of the cytochrome P-450 enzyme system in vivo. It is suggested that single oxygen generation within cells may be a common factor linking the many structurally diverse inducers of the enzyme system.  相似文献   

11.
12.
Secondary amine mono-oxygenase from Pseudomonas aminovorans catalyzes the NAD(P)H- and dioxygen-dependent N-dealkylation of secondary amines to yield a primary amine and an aldehyde. Heme iron, flavin, and non-heme iron prosthetic groups are known to be present in the oligomeric enzyme. The N-dealkylation reaction is also catalyzed by the only other heme-containing mono-oxygenase, cytochrome P-450. In order to identify the heme iron axial ligands of secondary amine mono-oxygenase so as to better define the structural requirements for oxygen activation by heme enzymes, we have investigated the spectroscopic properties of the enzyme. The application of three different spectroscopic techniques, UV-visible absorption, magnetic circular dichroism and electron paramagnetic resonance, to study eight separate enzyme derivatives has provided extensive and convincing evidence for the presence of a proximal histidine ligand. This conclusion is based primarily on comparisons of the spectral properties of the enzyme with those of parallel derivatives of myoglobin (histidine proximal ligand) and P-450 (cysteinate proximal ligand). Spectral studies of ferric secondary amine mono-oxygenase as a function of pH have led to the proposal that the distal ligand is water. Deprotonation of the distal water ligand occurs upon either raising the pH to 9.0 or substrate (dimethylamine) binding. In contrast, the deoxyferrous enzyme appears to have a weakly bound nitrogen donor distal ligand. Initial spectroscopic studies of the iron-sulfur units in the enzyme are interpreted in terms of a pair of Fe2S2 clusters. Secondary amine mono-oxygenase is unique in its ability to function as cytochrome P-450 in activating molecular oxygen but to do so with a myoglobin-like active site. As such, it provides an important system with which to probe structure-function relations in heme-containing oxygenases.  相似文献   

13.
Oxidation of carbon monoxide and methane by Pseudomonas methanica.   总被引:18,自引:0,他引:18  
The oxidation of carbon monoxide and methane by suspensions and ultrasonic extracts of Pseudomonas methanica was studied. A continuous assay for the oxidation of CO to CO2 was devised, using O2 and CO2 electrodes in combination. Stoicheiometries of CO-dependent CO2 formation, O2 consumption and NADH oxidation, and the partial stoicheiometries of methane-dependent NADH oxidation, suggest the involvement of a mono-oxygenase in these oxidations. Evidence is presented suggesting methane and CO oxidation are catalysed by a single enzyme system, distinct, at least in part, from the NADH oxidase present in extracts. Ethanol was able to provide the reductant necessary for CO oxidation by cell suspensions, though the metabolism of ethanol by P. methanica was found unlikely to result in substrate-level formation of NADH; the means whereby alcohol oxidation could supply reductant for the mono-oxygenase are discussed.  相似文献   

14.
Salmonella/microsome soft-agar overlay ('Ames' test) plates were prepared using the previously published 'York' method. Plates treated with either added 3-methylcholanthrene (3MC) or 3,3'-dichlorobenzidine (DCB) and Aroclor-induced rat-liver S9 were stored at 4 degrees after preparation and removed at time intervals thereafter for incubation at 37 degrees. The number of 3MC-induced mutants in TA100 fell within 24 h of storage by 50% but then remained at this level until 96 h. Storage for a total of 336 h still showed some residual mono-oxygenase activity. On the other hand the ability to convert DCB to a mutagen for TA98 appeared to increase with storage, reaching a peak by 96 h. After this time the number of induced mutants fell until by 336 h the numbers were approximately equal to those plates which had not been stored in the cold.  相似文献   

15.
To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65 degrees C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r(2) = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity.  相似文献   

16.
Methane oxidation by Nitrosomonas europaea.   总被引:19,自引:0,他引:19       下载免费PDF全文
Methane inhibited NH4+ utilization by Nitrosomonas europaea with a Ki of 2mM. O2 consumption was not inhibited. In the absence of NH4+, or with hydrazine as reductant, methane caused nearly a doubling in the rate of O2 uptake. The stimulation was abolished by allylthiourea, a sensitive inhibitor of the oxidation of NH4+. Analysis revealed that methanol was being formed in these experiments, with yields approaching 1 mol of methanol per mol of O2 consumed under certain conditions. When cells were incubated with NH4+ under an atmosphere of 50% methane, 50 microM-methanol was generated in 1 h. It is concluded that methane is an alternative substrate for the NH3-oxidizing enzyme (ammonia mono-oxygenase),m albeit with a much lower affinity than for methane mono-oxygenase of methanotrophs.  相似文献   

17.
Cultures of the rainbow trout fibroblast cell line RTG-2 withstood temperatures from 0 degrees C to 28 degrees C. At 0 degrees C and 28 degrees C, no proliferation occurred, but cells persisted for at least 7 days. If the cultures were placed back at 22 degrees C, proliferation returned to normal in those that had been kept at 0 degrees C but was reduced in cultures that had been kept at 28 degrees C. Above 28 degrees C, cultures survived for only short periods. If RTG-2 cells that were grown routinely at 22 degrees C were shifted to 26, 28, and 30 degrees C, heat shock proteins (hsps) of 100, 87, 70, 68, 60, 39, 27, and 19 kilodaltons were synthesized. Synthesis was most pronounced at 28 degrees C, and at this temperature hsp synthesis was maximal by 2 hr and had returned to control levels by 36 hr. Individual hsps were synthesized maximally at slightly different times and temperatures, but under all conditions hsps 87 and 70 were most abundant. If cultures were shifted to 24 degrees C or 32 degrees C, hsp synthesis was not observed. Neither the placement of cultures at 5 degrees C nor the shift of cultures that had been maintained at 0 degrees C or 5 degrees C back to 22 degrees C induced the synthesis of hsps. However, cultures incubated at 5 degrees C for 24 hr did synthesize hsps at 26 degrees C, 28 degrees C, and 30 degrees C.  相似文献   

18.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   

19.
Induction and decay of thermotolerance in rainbow trout fibroblasts   总被引:3,自引:0,他引:3  
Thermotolerance was studied in the rainbow trout fibroblast cell line RTG-2. RTG-2 cultures that had been incubated at 28 degrees C for 24 h were better able to withstand ultimately lethal temperatures above 28 degrees C than RTG-2 cultures that had been maintained at the routine growth temperature of 22 degrees C. This thermotolerance developed rapidly between 3 and 6 h and was fully developed by 24 h at 28 degrees C. After development for 24 hr at 28 degrees C, thermotolerance showed little change over 72 h at 0 and 5 degrees C but approximately a 40 and 60% reduction at 10 and 22 degrees C, respectively. This is the first demonstration of heat-induced thermal resistance in the cells of a poikilothermic vertebrate.  相似文献   

20.
Since it was possible for Ca2+,Mg2+-ATPase of sarcoplasmic reticulum (SR) to change its aggregation state in the membrane depending on temperature, and since the change could be the cause of the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity, the aggregation state of Ca2+,Mg2+-ATPase at 0 degrees C in the membrane was compared with that at 35 degrees C by freeze-fracture electron microscopy. These temperatures are below and above the break in the Arrhenius plot (about 18 degrees C), respectively. Two kinds of samples were used; fragmented SR vesicles and egg PC-ATPase vesicles, a reconstituted preparation from purified Ca2+,Mg2+-ATPase and egg yolk phosphatidylcholine (egg PC). For both the appearance of particles in the fracture faces of the samples fixed at 0 degrees C was similar to that at 35 degrees C, and phase separation between protein and lipid was not observed even at 0 degrees C. The size of the particles was measured and histograms of the sizes at 0 degrees C and 35 degrees C were made. The histogram at 0 degrees C was similar to that at 35 degrees C with a peak at 7.1 nm, which is 1-2 nm smaller than the value reported so far. The number of the particles per unit area of the membrane was also counted. The value at 0 degrees C was similar to that at 35 degrees C. These results indicate that Ca2+,Mg2+-ATPase of SR exists in the same aggregation state (estimated as oligomer based on the values obtained in this experiment) between 0 degrees C and 35 degrees C. Based on the results of this study we think that the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity in SR is not caused by the change in the aggregation state of Ca2+,Mg2+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号