首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell cycle regulation of the p34cdc2 inhibitory kinases.   总被引:15,自引:4,他引:11       下载免费PDF全文
In cells of higher eukaryotic organisms the activity of the p34cdc2/cyclin B complex is inhibited by phosphorylation of p34cdc2 at two sites within its amino-terminus (threonine 14 and tyrosine 15). In this study, the cell cycle regulation of the kinases responsible for phosphorylating p34cdc2 on Thr14 and Tyr15 was examined in extracts prepared from both HeLa cells and Xenopus eggs. Both Thr14- and Tyr15- specific kinase activities were regulated in a cell cycle-dependent manner. The kinase activities were high throughout interphase and diminished coincident with entry of cells into mitosis. In HeLa cells delayed in G2 by the DNA-binding dye Hoechst 33342, Thr14- and Tyr15-specific kinase activities remained high, suggesting that a decrease in Thr14- and Tyr15- kinase activities may be required for entry of cells into mitosis. Similar cell cycle regulation was observed for the Thr14/Tyr15 kinase(s) in Xenopus egg extracts. These results indicate that activation of CDC2 and entry of cells into mitosis is not triggered solely by activation of the Cdc25 phosphatase but by the balance between Thr14/Tyr15 kinase and phosphatase activities. Finally, we have detected two activities capable of phosphorylating p34cdc2 on Thr14 and/or Tyr15 in interphase extracts prepared from Xenopus eggs. An activity capable of phosphorylating Tyr15 remained soluble after ultracentrifugation of interphase extracts whereas a second activity capable of phosphorylating both Thr14 and Tyr15 pelleted. The pelleted fraction contained activities that were detergent extractable and that phosphorylated p34cdc2 on both Thr14 and Tyr15. The Thr14- and Tyr15-specific kinase activities co-purified through three successive chromatographic steps indicating the presence of a dual-specificity protein kinase capable of acting on p34cdc2.  相似文献   

2.
Cell cycle regulation of human WEE1.   总被引:24,自引:5,他引:19       下载免费PDF全文
C H McGowan  P Russell 《The EMBO journal》1995,14(10):2166-2175
WEE1 kinase negatively regulates entry into mitosis by catalyzing the inhibitory tyrosine phosphorylation of CDC2/cyclin B kinase. We report here an investigation of human WEE1. Endogenous WEE1 migrates as an approximately 94 kDa protein in SDS-PAGE, substantially larger than the 49 kDa protein encoded by the original human WEE1 cDNA clone that was truncated at the 5'-end. Antibody depletion experiments demonstrate that WEE1 accounts for most of the activity that phosphorylates CDC2 on Tyr15 in an in vitro assay of HeLa cell lysates, hence it is likely to have an important role in the mitotic control of human cells. WEE1 activity was not found to be elevated in HeLa cells arrested in S phase, suggesting that unreplicated DNA does not delay M phase by hyperactivating WEE1. WEE1 activity is strongly suppressed during M phase, suggesting that negative regulation of WEE1 could be part of the mechanism by which activation of CDC2/cyclin B kinase is promoted during the G2/M transition. M phase WEE1 is re-activated in samples prepared in the absence of protein phosphatase inhibitors, demonstrating that WEE1 is inhibited by a mechanism that requires protein phosphorylation.  相似文献   

3.
4.
Commitment to DNA replication is one of the major control points of the eukaryotic cell cycle, and one that has been curiously hard to analyse. However, homologous components of this process are now being identified by genetic analysis of yeast and by biochemical analysis of cell-free systems from higher eukaryotes. This homology suggests that these components are part of a universal mechanism for controlling the eukaryotic cell cycle. The most important component of this mechanism is the cdc2 protein, which controls the initiation of both DNA replication and mitosis. At present, however, its precise role in DNA replication is unclear.  相似文献   

5.
6.
Scotin is a pro-apoptotic mammalian gene, which is induced upon DNA damage or cellular stress in a p53-dependent manner. In this report, we have used Drosophila as a model system to obtain a preliminary insight into the molecular mechanism of Scotin function, which was validated using the mammalian system. Targeted expression of Scotin in developing Drosophila induced apoptosis and developmental defects in wings and eyes. Co-expression of Scotin with the anti-apoptotic protein P35, while inhibited the apoptosis in both dividing and non-dividing cells, rescued adult wing or eye phenotypes only when Scotin was expressed in non-dividing cells. This suggests that mechanisms of Scotin-induced apoptosis in dividing and non-dividing cells may vary. Suppressor-enhancer screen using cell cycle regulators suggested that Scotin may mediate cell cycle arrest at both G1/S and G2/M phases. Over-expression of Scotin in mammalian cells resulted in mitotic arrest and subsequently apoptosis. Furthermore, a larger proportion of cells over-expressing Scotin showed sequestration of Cyclin B1 in the cytoplasm. These results suggest that one of the ways by which Scotin induces apoptosis is by causing cell-cycle arrest.  相似文献   

7.
Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation   总被引:51,自引:0,他引:51  
cdc2 kinase regulates the progression of eukaryotic cells through the division cycle. Events such as cell growth, DNA replication and mitosis are coordinated through the activation of specific forms of this kinase. Here I discuss our present knowledge of the mechanisms that regulate the activity of cdc2 kinase.  相似文献   

8.
Mechanisms of p34cdc2 regulation.   总被引:14,自引:6,他引:8       下载免费PDF全文
The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.  相似文献   

9.
Significant progress has been made in the study of ftsZ expression and the topology of FtsZ protein localization in Escherichia coli cells. Exciting results on the identification of new genes required for chromosome resolution and partitioning after the completion of DNA synthesis have also been reported. A recent area of study is asymmetric cell division and its role in differentiation in Bacillus subtilis and Caulobacter crescentus. Biochemical activities of bacterial cell division gene products are also beginning to be addressed.  相似文献   

10.
Cell cycle dependent growth factor regulation of gene expression   总被引:2,自引:0,他引:2  
The expression of the proto-oncogenes c-fos and c-myc is a rapid response of G0-arrested fibroblasts to serum and peptide growth factors; however, the role of the c-fos and c-myc gene products in subsequent cell cycle transit is not understood. We examined the expression of c-fos and c-myc mRNA in Balb/c 3T3 murine fibroblasts in response to platelet-derived growth factor (PDGF) and platelet-poor plasma, using arrest points associated with density dependent growth inhibition or metabolic inhibition to synchronize cells in S phase of the cell cycle. The expression of c-fos and c-myc mRNA in Balb/c 3T3 cells was differentially regulated with respect to growth factor dependence and cell cycle dependence. c-fos expression was induced in the presence of PDGF and was unaffected by plasma. The induction of c-fos expression in response to PDGF was cell cycle independent, occurring in cells transiting S phase and G2 as well as in G0 arrest. In contrast, c-myc expression was both growth factor and cell cycle dependent. In G0 arrested cells, c-myc expression was PDGF-dependent and plasma-independent, and PDGF was required for maintenance of elevated c-myc levels during G1 transit. In cells transiting S phase, c-myc mRNA was induced in response to PDGF, but was also plasma-dependent in S phase cells that had been "primed" by exposure to PDGF during S phase.  相似文献   

11.
Garcia K  Su TT 《Fly》2008,2(3):133-137
Drosophila researchers met in sunny San Diego for the 49(th) Annual Meeting of The Genetics Society of America. It was cold outside and even colder inside. Like last year, 'Mitosis, Meiosis and Cell Division' was no longer a session. Instead, we searched out and covered talks and posters in 'Cell Division and Growth Control', 'Gametogenesis', 'Cytoskeleton and Cell Biology' and 'Genome and Chromosome Structure'. We split up for maximal coverage and re-grouped later for the Workshop on Cell Cycle and Checkpoints. We apologize in advance for the brevity or omission of some reports.  相似文献   

12.
The protein kinase p34cdc2 is a key regulator of the cell cycle in all eukaryotes. Its activity is controlled by cell cycle-dependent interactions with other proteins, notably cyclins, and by changes in its phosphorylation state. Two inhibitory phosphorylation sites in chicken p34cdc2 have previously been mapped to threonine 14 and tyrosine 15. Here we describe the identification of threonine 161 as an additional in vivo phosphorylation site in vertebrate p34cdc2. Phosphorylation of this site is cell cycle dependent and likely to be required for p34cdc2 activity.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) Tat protein has been reported to transactivate several cellular genes, including the potent chemotactic factor interleukin-8 (IL-8). Consistent with these in vitro assays, elevated levels of IL-8 protein are found in the serum of HIV-infected individuals. We now extend these observations by demonstrating that Tat induction of IL-8 is linked to the cell cycle. Cells that constitutively express the Tat(1-86) protein (eTat) and control cells (pCEP) were reversibly blocked at the G(1)/S border with hydroxyurea or thymidine. The cells were subsequently released, and IL-8 expression was monitored by RNase protection assays and enzyme-linked immunosorbent assay (ELISA). RNase protection assays demonstrated that IL-8 mRNA expression is transiently induced, approximately fourfold, as the Tat-expressing cells enter S phase. Consistent with the RNase protection assay, an increase in IL-8 protein was observed in the cell supernatant using an IL-8 ELISA. Similar experiments were performed following a reversible block at the G(2)/M border with nocodazole and release into G(1). Using the RNase protection assay and ELISA, little or no increase in IL-8 expression was observed during G(1). Using gel shift as well as an immobilized DNA binding assay, we demonstrate that the increase in IL-8 gene expression correlates with a specific increase in p65 NF-kappa B binding activity only in the nucleus of the Tat-expressing cells. Moreover, the CREB-binding protein coactivator is present in the complex in the Tat cell line. Finally, we demonstrate that the presence of the proteasome inhibitor MG-132 inhibits the induction of NF-kappa B binding, as well as IL-8 expression, supporting the role of NF-kappa B.  相似文献   

14.
The cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)/uracil DNA glycosylase (UDG) gene was examined in normal human cells. Steady state RNA levels were monitored by Northern blot analysis using a plasmid (pChug 20.1) which contained the 1.3 kb GAPDH/UDG cDNA. The biosynthesis of the 37 kDa GAPDH/UDG protein was determined using an anti-human placental GAPDH/UDG monoclonal antibody to immunoprecipitate the radiolabeled protein. Increases in steady state GAPDH/UDG mRNA levels were cell cycle specific. A biphasic pattern was observed resulting in a 19-fold increase in the amount of GAPDH/UDG mRNA. The biosynthesis of the 37 kDa GAPDH/UDG protein displayed a similar biphasic regulation with a 7-fold increase. Pulse-chase experiments revealed a remarkably short half life of less than 1 hr. for the newly synthesized 37 kDa protein, comparable to that previously documented for a number of oncogenes. GAPDH/UDG mRNA levels were markedly reduced at 24 hr. when DNA synthesis was maximal. These results define the GAPDH/UDG gene as cell cycle regulated with a characteristic temporal sequence of expression in relation to DNA synthesis. The cell cycle synthesis of a labile 37 kDa monomer suggests a possible regulatory function for this multidimensional protein. Further, modulation of the GAPDH/UDG gene in the cell cycle may preclude its use as a reporter gene when the proliferative state of the cell is not kept constant.  相似文献   

15.
Cell cycle regulation of flagellar genes.   总被引:9,自引:5,他引:4       下载免费PDF全文
The expression of the flagellar master operon, flhDC, peaked in the middle of three consecutive cell cycles. The level of expression was lowest at the time of cell division. The expression of the second-level operon, flhB, peaked at cell division. The swimming speed of individual cells was also highest at the time of cell division.  相似文献   

16.
In the chemically transformed mouse fibroblasts (BP-A31) placed in a serum-free medium, the cdc2 mRNA content decreases in parallel with the cessation of [3H]thymidine incorporation. Extinction of the cdc2 gene expression is also observed in BP-A31 cells overexpressing the human c-myc oncogene. At quies-cence, the cdc2 gene expression can be reinduced with serum or with other mitogens such as insulin or 12-O-tetradecanoyl phorbol 13-acetate (TPA). The kinetics of induction is characterized by a lag period which differs according to the mitogen used and reflects the length of the G1 phase (4–6 h with insulin or serum, 9–12 h with TPA). The cdc2 mRNA accumulation is prevented when protein synthesis is blocked with cycloheximide, also if the drug is added at a time when the synthesis of cdc2 mRNA is already under way. Similarly, removal of the mitogen leads to a cessation of the cdc2 mRNA accumulation. These results suggest that the increased expression of the cdc2 gene is mediated by (a) short-lived, growth factor-regulated protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

17.
The retinoblastoma gene product (RB) is a nuclear protein which has been shown to function as a tumor suppressor. It is phosphorylated from S to M phase of the cell cycle and dephosphorylated in G1. This suggests that the function of RB is regulated by its phosphorylation in the cell cycle. Ten phosphotryptic peptides are found in human RB proteins. The pattern of RB phosphorylation does not change from S to M phases of the cell cycle. Hypophosphorylated RB prepared from insect cells infected with an RB-recombinant baculovirus is used as a substrate for in vitro phosphorylation reactions. Of several protein kinases tested, only cdc2 kinase phosphorylates RB efficiently and all 10 peptides can be phosphorylated by cdc2 in vitro. Removal of cdc2 from mitotic cell extracts by immunoprecipitation causes a concomitant depletion of RB kinase activity. These results indicate that cdc2 or a kinase with similar substrate specificity is involved in the cell cycle-dependent phosphorylation of the RB protein.  相似文献   

18.
19.
Cell cycle regulation of the T-box transcription factor tbx2   总被引:5,自引:0,他引:5  
  相似文献   

20.
H Yamano  K Ishii    M Yanagida 《The EMBO journal》1994,13(22):5310-5318
We show that the fission yeast dis2 protein phosphatase, which is highly similar to mammalian type 1 phosphatase, is a phosphoprotein containing phosphoserine (phospho-S) and threonine (phospho-T). It has several phosphorylation sites, two of which locate in the C-terminus. Phospho-T was abolished in the alanine substitution mutant at the C-terminal T316, which is conserved as a residue in the cdc2 consensus, TPPR, in a number of type 1-like phosphatases. In G2-arrested cdc2-L7 cells, the degree of T316 phosphorylation was reduced, whereas it was enhanced in metaphase-arrested nuc2-663 mutant cells. Phospho-T was produced in dis2 by fission yeast cdc2 kinase, but not in the substitution mutant A316, indicating that the T316 residue was the site for cdc2 kinase in vitro. Phosphatase activity of wild type dis2 was reduced by incubation with cdc2 kinase, but that of mutant dis2-A316 was not. Phosphorylation of T316 hence has a potential significance in cell cycle control in conjunction with cdc2 kinase activation and inactivation. Overexpression phenotypes of wild type dis2+, sds21+ and mutant dis2-A316, sds21-TPPR genes were consistent with negative regulation of dis2 by phosphorylation. This type of regulation would explain why cells harboring the dis2-11 mutation enter mitosis but fail to exit from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号