共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in mitochondrial 12S rRNA gene are one of the most important causes of aminoglycoside-induced and nonsyndromic hearing loss. Here we report the characterization of one Han Chinese pedigree with aminoglycoside-induced and nonsyndromic hearing loss.This Chinese family carrying the 12S rRNA A1555G mutation exhibited high penetrance and expressivity of hearing impairment. In particular, penetrances of hearing loss in this family pedigree were 43.8% and 25%, respectively, when aminoglycoside-induced heating loss was included or excluded. Mutational analysis of entire mitochondrial genomes in this family showed the homoplasmic A1555G mutation and a set of variants belonging to haplogroup Y2. Of these, the A14693G variant occurred at the extremely conserved nucleotide (conventional position 54) of the TψC-loop of tRNAGlu and was absent in 156 Chinese controls. Nucleotides at position 54 of tRNAs are often modified, thereby contributing to the structural formation and stabilization of functional tRNAs. Thus, the structural alteration of tRNA by the A14693G variant may lead to a failure in tRNA metabolism and impair mitochondrial protein synthesis, thereby worsening mitochondrial dysfunctions altered by the A1555G mutation. Therefore, the tRNAalu A14693G variant may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated AI555G mutation in this Chinese pedigree. 相似文献
2.
Liao Z Zhao J Zhu Y Yang L Yang A Sun D Zhao Z Wang X Tao Z Tang X Wang J Guan M Chen J Li Z Lu J Guan MX 《Biochemical and biophysical research communications》2007,362(3):670-676
We report here the clinical, genetic and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. The penetrance of hearing loss (affected matrilineal relatives/total matrilineal relatives) in this pedigree was 53%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrance of hearing loss in this pedigree was 42%. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA A1555G mutation and other 35 variants belonging to Eastern Asian haplogroup D4. Of these, the V313I (G11696A) mutation in ND4 was associated with vision loss. However, the extremely low penetrance of visual loss, and the mild biochemical defect and the presence of one/167 Chinese controls indicted that the G11696A mutation is itself not sufficient to produce a clinical phenotype. Thus, the G11696A mutation may act in synergy with the primary deafness-associated 12S rRNA A1555G mutation in this Chinese family, thereby increasing the penetrance and expressivity of hearing loss in this Chinese pedigree. 相似文献
3.
摘要: 对1个中国汉族耳聋家系进行了临床和分子遗传学特征分析。家系中听力下降的母系成员表现为程度不等、听力图形态不同的听力损害, 但同为双侧对称的感觉神经性耳聋。该家系耳聋外显率很高, 包括药物致聋的耳聋外显率为75%, 而非药物致聋的外显率为41.7%。对母系成员进行线粒体DNA(mtDNA)全序列扩增分析, 发现了耳聋相关12S rRNA A1555G同质性突变位点和多态性位点, 属于东亚人群B5b单体型。在这些变异位点中, mtDNA 15927位点的G-A碱基变化破坏tRNAThr反密码子结构上十分保守的C-G碱基对, 这可能加重由A1555G突变造成的线粒体功能缺陷。这表明tRNAThrG15927A突变可能增强携带12S rRNA A1555G的中国汉族耳聋家系的外显率和表现度。 相似文献
4.
Jianxin Lu Yaping Qian Zhiyuan Li Aifen Yang Yi Zhu Ronghua Li Li Yang Xiaowen Tang Bobei Chen Yu Ding Yongyan Li Junyan You Jing Zheng Zhihua Tao Fuxin Zhao Jindan Wang Dongmei Sun Jianyue Zhao Yanzi Meng Min-Xin Guan 《Mitochondrion》2010,10(1):69-81
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families. 相似文献
5.
Bravo O Ballana E Estivill X 《Biochemical and biophysical research communications》2006,344(2):511-516
The A1555G mutation in the mitochondrial small ribosomal RNA gene (12S rRNA) has been associated with aminoglycoside-induced, nonsyndromic hearing loss. However, the clinical phenotype of A1555G carriers is extremely variable. In the present study, we have performed an audiological evaluation of a group of deaf patients and hearing carriers of mutation A1555G with the aim to assess the prevalence of the mutation and determine the associated cochlear alterations. Fifty-four patients affected of nonsyndromic hearing loss were screened for the presence of the A1555G mitochondrial mutation. Nine of the familial cases (21%) carried the A1555G mutation, whereas the mutation was not found in any of the sporadic cases. The positive cases and some of their family members underwent a clinical study consisting in a clinical evaluation and audiological testing. The phenotype of A1555G patients varied in age of onset and severity of hearing loss, ranging from profound deafness to completely normal hearing. The audiometric alterations showed bilateral hearing loss, being more severe at high frequencies. Otoacoustic emissions were absent in deaf A1555G carriers, and auditory brainstem response indicated a prolonged Wave I, suggesting a cochlear dysfunction without any effect of the auditory nerve. Moreover, all hearing carriers of A1555G also presented alterations in cochlear physiology. In conclusion, the A1555G mitochondrial mutation causes a cochlear form of deafness, characterized by a more severe loss of hearing at high frequencies. Although the expression of the mutation is variable, cochlear alterations are present in all carriers of mutation A1555G. 相似文献
6.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达. 相似文献
7.
Han D Dai P Zhu Q Liu X Huang D Yuan Y Yuan H Wang X Qian Y Young WY Guan MX 《Biochemical and biophysical research communications》2007,357(2):554-560
We report here the clinical, genetic, and molecular characterization of a large Han Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Two and 13 of 66 matrilineal relatives suffered from aminoglycoside-induced and nonsyndromic hearing loss, respectively. These matrilineal relatives exhibited a wide range of severity of hearing loss, varying from profound to normal hearing. In the absence of aminoglycosides, the age-at-onset of hearing impairment in these matrilineal relatives ranged from 13 to 50years. Furthermore, these affected matrilineal relatives shared some common features: bilateral hearing loss of high frequencies and symmetries. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified the homoplasmic 12S rRNA C1494T mutation and other 34 variants belonging to Eastern Asian haplogroup F1. Of these, the variant T5628C occurs at an extremely conserved nucleotide (A31) of tRNA(Ala). This variant converted a very conservative A-U to a G-U base-pairing at AC-stem of this tRNA. The disruption of this base-pairing in tRNAs by mtDNA mutations has been associated with several clinical abnormalities. The alteration of structure of the tRNA(Ala) by the T5628C mutation may lead to a failure in tRNA metabolism and lead to impairment of mitochondrial translation, thereby worsening mitochondrial dysfunctions, caused by the C1494T mutation. Therefore, this mtDNA mutation may influence the phenotypic manifestation of the 12S rRNA C1494T mutation in this Chinese pedigree. 相似文献
8.
We report here the characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). Strik-ingly, this Chinese family displayed high penetrance and expressivity of visual loss. The average age-of-onset of vision loss was 18 years in this family. Nineteen (11 males/8 females) of 29 matrilineal relatives in this family developed visual loss with a wide range of severity,ranging from blindness to normal vision. Sequence analysis of mitochondrial genome in this pedigree revealed the presence of the ND4 G11778A mutation and 44 other variants belonging to Asian haplogroup M7b. The G11778A mutation is present at homoplasmy in matri-lineal relatives of this Chinese family. Of other variants, the CO1 G6480A, ND5 T12811C and Cytb A15395G located at highly conserved residues of corresponding polypeptides. In fact, these variants were implicated to be involved in other clinical abnormalities. Here, these variants may act in synergy with the primary LHON-associated Gl1778A mutation. Thus, the mitochondrial dysfunction caused by the primary ND4 G11778A mutation may be worsened by these mitochondrial variants. The results imply that the G6480A, T12811C and A15395G variants might have a potential modifier role in increasing the penetrance and expressivity of the primary LHON-associated G11778A mutation in this Chinese family. 相似文献
9.
线粒体12S rRNA和tRNASer(UCN) 基因是导致非综合征型听力损失的两个突变热点区域。作者收集了1个母系遗传感音神经性聋家系, 该家系同时携带线粒体DNA (mtDNA) A1555G和G7444A突变。临床资料分析表明, 该家系包括药物致聋的耳聋外显率(所有耳聋患者/所有母系成员)为58%, 而非药物致聋的耳聋外显率(非药物性聋患者/所有母系成员)为25%, 明显高于其他携带A1555G突变的耳聋家系。先证者的线粒体全序列分析表明, 该线粒体基因组共有28个多态位点, 属于东亚人群B4c1单体型。在这些多态位点中, 除A1555G和G7444A突变外, 未发现其他有功能意义的突变。这表明mtDNA G7444A突变可能加重由A1555G突变造成的线粒体功能缺失, 从而增加耳聋的外显率。 相似文献
10.
Wanshi Cai a b Qun Fu c Xiangtian Zhou b Jia Qu b Yi Tong a d Min-Xin Guan a e a Zhejiang Provincial Key Laboratory of Medical Genetics School of Life Sciences Wenzhou Medical College Wenzhou China b School of Ophthalmology Optometry Wenzhou China c The Third Affiliated Hospital Xinxiang Medical College Xinxiang China d The First Affiliated Hospital Fujian Medical University Fuzhou China e Division of Human Genetics Cincinnati Children 's Hospita... 《Acta Genetica Sinica》2008,(11)
We report here the characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy(LHON).Strikingly,this Chinese family displayed high penetrance and expressivity of visual loss.The average age-of-onset of vision loss was 18 years in this family.Nineteen(11 males/8 females) of 29 matrilineal relatives in this family developed visual loss with a wide range of severity,ranging from blindness to normal vision.Sequence analysis of mitochondrial genome in this pedigree revealed ... 相似文献
11.
Tong Y Mao Y Zhou X Yang L Zhang J Cai W Zhao F Wang X Lu F Qu J Guan MX 《Biochemical and biophysical research communications》2007,357(2):524-530
We report here the clinical, genetic, and molecular characterization of one Han Chinese family with maternally transmitted Leber's hereditary optic neuropathy (LHON). Three of seven matrilineal relatives in this family exhibited the variable degree of central vision loss at the age of 12, 14, and 16 years old, respectively. Sequence analysis of the complete mitochondrial DNA in this pedigree revealed the presence of the ND1 G3460A mutation and 47 other variants, belonging to the Asian haplogroup M7b2. The G3460A mutation is present at homoplasmy in matrilineal relatives of this Chinese family. Of other variants, the homoplasmic A14693G mutation is of special interest as it was implicated to be associated with other mitochondrial disorders. This mutation is located at the TpsiC-loop, at conventional position 54 of tRNA(Glu). The uridine at this position (U54), which is highly conserved from bacteria to human mitochondria, has been implicated to be important for tRNA structure and function. Thus, the A14693G mutation may alter the tertiary structure of this tRNA, cause a failure in this tRNA metabolism, thereby worsening the mitochondrial dysfunction associated with the primary G3460A mutation. Therefore, the tRNA(Glu) A14693G mutation may have a potential modifier role in the phenotypic manifestation of the primary LHON-associated G3460A mutation in this Chinese family. 相似文献
12.
Mitochondrial rRNA and tRNA and hearing function 总被引:2,自引:0,他引:2
13.
Xing G Chen Z Wei Q Tian H Li X Zhou A Bu X Cao X 《Biochemical and biophysical research communications》2006,346(4):1131-1135
We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families. 相似文献
14.
Yan Q Bykhovskaya Y Li R Mengesha E Shohat M Estivill X Fischel-Ghodsian N Guan MX 《Biochemical and biophysical research communications》2006,342(4):1130-1136
Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations. 相似文献
15.
Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation 总被引:8,自引:0,他引:8
Young WY Zhao L Qian Y Wang Q Li N Greinwald JH Guan MX 《Biochemical and biophysical research communications》2005,328(4):1244-1251
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of four Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss (5.2%, 4.8%, 4.2%, and 13.3%, respectively, and with an average 8% penetrance). In particular, four of all five affected matrilineal relatives of these pedigrees had aminoglycoside-induced hearing loss. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical homoplasmic A1555G mutation, associated with hearing impairment in many families from different genetic backgrounds. The fact that mtDNA of those pedigrees belonged to different haplogroups R9a, N9a, D4a, and D4 suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. These data imply that the nuclear background or/and mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycoside appears to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families. 相似文献
16.
为建立快速、简便、准确筛查线粒体DNA 12S rRNA基因A1555G突变的基因检测技术平台,收集1 758例(女性808例,男性950例)正常人群样本,利用Bsm AⅠ酶切法筛查线粒体DNA A1555G突变以及通过实时荧光定量Taqman探针法和直接测序法对筛查结果进行验证,结果检测到2例A1555G阳性突变样本,其中1例为男性,1例为女性。实时荧光定量Taqman探针法与Bsm AⅠ酶切法、直接测序法检测结果完全相符,未发现假阳性和假阴性,该方法具有结果准确直观、简单省时,特异性强,敏感性高的优点,适用于对母系遗传性耳聋线粒体DNA A1555G突变的大规模筛查或氨基糖甙类抗生素应用前的预防性检测。 相似文献
17.
Zheng BJ Peng GH Chen BB Fang F Zheng J Wu Y Liang LZ Nan BY Tang XW Zhu Y Lu JX Guan MX 《遗传》2012,34(6):695-704
线粒体DNA(Mitochondrial DNA,mtDNA)突变是引起耳聋的重要原因之一。尤其是12S rRNA基因是药物性耳聋与非综合征型耳聋相关的突变热点区域。文章收集了浙江省各地区非综合征型及药物性耳聋患者标本318例,对其进行临床和分子遗传学评估。12S rRNA基因突变分析发现34个变异位点,已知的1555A>G、1494C>T和1095T>C突变分别占9.1%、0.6%和1.25%。结构和种系发生分析显示,839A>G和1452T>C突变位于12S rRNA基因的高度保守区域且未在449例正常对照组中发现,可能增加了耳毒性药物的敏感性。其他变异位点为多态性位点。文章数据支持了12S rRNA基因是耳毒性药物的作用靶点之一这一理论,为预测个体耳毒性的发生风险,提高氨基糖甙类药物治疗安全性提供了有价值的信息,以期降低耳聋的发生。 相似文献
18.
Xing G Chen Z Wei Q Tian H Li X Zhou A Bu X Cao X 《Biochemical and biophysical research communications》2006,344(4):1253-1257
We explored the clinical and molecular characterization of a Chinese family with non-syndromic hearing impairment. Clinical evaluations revealed a possible maternal inheritance pattern, and showed an extremely similar phenotype of hearing loss including the age of onset, severity, and audiometric configuration. Sequence analysis of the mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, which was absent in other family members and 40 Chinese controls. This mutation has previously been reported sporadically in a few individuals with aminoglycoside-induced and non-syndromic hearing loss. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly evolutionarily conserved in mammals. The occurrence of the A827G mutation in these genetically unrelated subjects strongly suggests that this mutation is involved in the pathogenesis of hearing impairment. However, incomplete penetrance of hearing loss indicates that the A827G mutation alone is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression, even though aminoglycosides and GJB2 gene may not contribute to the penetrance of the A827G mutation in this Chinese family. In contrast with the variable phenotype of hearing loss associated with other mitochondrial mutations, all of the patients in our family exhibited strikingly similar clinical features. This discrepancy likely reflects the difference of genetic backgrounds between this pedigree and others. 相似文献
19.
Wei QP Zhou X Yang L Sun YH Zhou J Li G Jiang R Lu F Qu J Guan MX 《Biochemical and biophysical research communications》2007,357(4):910-916
We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations. 相似文献
20.
Dai D Lu Y Chen Z Wei Q Cao X Xing G 《Biochemical and biophysical research communications》2008,377(4):1152-1155
We reported here the clinical and molecular characterization of a Chinese subject with childhood-onset hearing impairment. Clinical evaluations showed that the patient suffered from profound and non-syndromic sensorineural hearing loss with flat configurations. Sequence analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes led to the identification of double deafness-associated mutations of A1555G and T1095C in the 12S rRNA gene which apparently in the homoplasmic forms. In additional, there was no other functionally significant nucleotide variants found in this subject. As previous studies have indicated that the A1555G mutation was a primary contributing factor underlying the development of deafness but not sufficient to produce clinical phenotype, the co-segregation of two mitochondrial DNA mutations raises the possibility that the T to C transition at position 1095 plays a role in the phenotypic expression of deafness-associated A1555G mutation. Actually, the T1095C mutation disrupted an evolutionarily conserved base-pair at stem-loop of helix 25 of 12S rRNA, resulting in impaired translation in mitochondrial protein synthesis and a significant reduction of cytochrome c oxidase activity. As a result, it may enhance the biochemical defect in patient carrying the A1555G mutation, thus changing the age of onset and the severity of hearing impairment. 相似文献