首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary neuralgic amyotrophy (HNA) is a rare autosomal dominant disorder on chromosome 17q, associated with recurrent, episodic, painful brachial plexus neuropathy. Dysmorphic features, including hypotelorism, long nasal bridge and facial asymmetry, are frequently associated with HNA. To assess genetic homogeneity, determine the cytogenetic location, and identify flanking markers for the HNA locus, six pedigrees were studied with multiple DNA markers from distal chromosome 17q. The results in all pedigrees supported linkage of the HNA locus to chromosome 17. A maximum combined lod score (Ζ = 10.94, £ = 0.05) was obtained with marker D17S939 and the maximum multipoint lod score was 22.768 in the interval defined by D17S802– D17S939. An analysis of crossovers placed the HNA locus within an approximate 4.0-cM interval flanked by D17S1603 and D17S802. Analysis of DNA from a human/mouse somatic cell hybrid with linked markers suggests that band 17q25 harbors the HNA locus. These results support genetic homogeneity within HNA and define a specific interval and a precise cytogenetic location in chromosome 17q25 for this disorder. Received: 24 June 1997 / Accepted: 21 August 1997  相似文献   

2.
Aneuploidy has profound effects on an organism,typically more so than polyploidy,and the basis of this contrast is not fully understood.A dosage series of the maize long arm of chromosome 1(1L)was used to compa re relative global gene expression in diffe rent types and degrees of aneuploidy to gain insights into how the magnitude of genomic imbalance as well as hypoploidy affects global gene expression.While previously available methods require a selective examination of specific genes,RNA sequencing provides a whole-genome view of gene expression in aneuploids.Most studies of global aneuploidy effects have concentrated on individual types of aneuploids because multiple dose aneuploidies of the same genomic region are difficult to produce in most model genetic organisms.The genetic toolkit of maize allows the examination of multiple ploidies and 1-4 doses of chromosome arms.Thus,a detailed examination of expression changes both on the varied chromosome arms and elsewhere in the genome is possible,in both hypoploids and hyperploids,compared with euploid controls.Previous studies observed the inverse trans effect,in which genes not varied in DNA dosage were expressed in a negative relationship to the varied chromosomal region.This response was also the major type of changes found globally in this study.Many genes varied in dosage showed proportional expression changes,though some were seen to be partly or fully dosage compensated.It was also found that the effects of aneuploidy were progressive,with more severe aneuploids producing effects of greater magnitude.  相似文献   

3.
The thirty-three 5′ flanking conserved sequences of the known low-molecular-weight subunit (LMW-GS) genes have been divided into eight clusters, which was in agreement with the classification based on the deduced N-terminal protein sequences. The DNA polymorphism between the eight clusters was obtained by sequence alignment, and a total of 34 polymorphic positions were observed in the approximately 200 bp regions, among which 18 polymorphic positions were candidate SNPs. Seven cluster-specific primer sets were designed for seven out of eight clusters containing cluster-specific bases, with which the genomic DNA of the ditelosomic lines of group 1 chromosomes of a wheat variety ‘Chinese Spring’ was employed to carry out chromosome assignment. The subsequent cloning and DNA sequencing of PCR fragments validated the sequences specificity of the 5′ flanking conserved sequences between LMW-GS gene groups in different genomes. These results suggested that the coding and 5′ flanking regions of LMW-GS genes are likely to have evolved in a concerted fashion. The seven primer sets developed in this study could be used to isolate the complete ORFs of seven groups of LMW-GS genes, respectively, and therefore possess great value for further research in the contributions of a single LMW-GS gene to wheat quality in the complex genetic background and the efficient selections of quality-related components in breeding programs.  相似文献   

4.
The whole-genome sequence of Thermoanaerobacter tengcongensis,an anaerobic thermophilic bacterium isolated from the Tengchong hot spring in China,was completed in 2002.However,in vivo studies on the genes of this strain have been hindered in the absence of genetic manipulation system.In order to establish such a system,the plasmid pBOLOl containing the replication origin of the T.tengcongensis chromosome and a kanamycin resistance cassette,in which kanamycin resistance gene expression was controlled by the ttel482 promoter from T.tengcongensis,was constructed and introduced into T.tengcongensis via electroporation.Subsequently,the high transformation efficiency occurred when using freshly cultured T.tengcongensis cells without electroporation treatment,suggesting that T.tengcongensis is naturally competent under appropriate growth stage.A genetic transformation system for this strain was then established based on these important components,and this system was proved to be available for studying physiological characters of T.tengcongensis in vivo by means of hisG gene disruption and complementation.  相似文献   

5.
Autism spectrum disorder(ASD) is gathering concerns in socially developed countries. ASD is a neuropsychiatric disorder of genetic origin with high prevalence of 1%–2%. The patients with ASD characteristically show impaired social skills. Today, many genetic studies identify numerous susceptible genes and genetic loci associated with ASD. Although some genetic factors can lead to abnormal brain function linked to ASD phenotypes, the pathogenic mechanism of ASD is still unclear. Here, we discuss a new mouse model for ASD as an advanced tool to understand the mechanism of ASD.  相似文献   

6.
Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozy-gosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.  相似文献   

7.
Yue S  Zhang W  Li FL  Guo YL  Liu TL  Huang H 《Cell research》2000,10(4):325-335
Molecular and genetic characterizations of mutants have led to a better understanding of many developmental processes in the model system Arabidopsis thaliana.However,the leaf development that is specific to plants has been little studies.With the aim of contributing to the genetic dissection of leaf development,we have performed a large-scare screening for mutants with abnormal leaves.Among a great number of leaf mutants we have generated by T-DNA and transposon tagging and ethylmethae sulfonate (EMS) mutagenesis,four independent mutant lines have been identified and studied genetically.Phenotypes of these mutant lines represent the defects of four novel muclear genes designated LL1(LOTUS LEAF 1),LL2(LOTUS LEAF2),URO(UPRIGHT ROSETTE),and EIL(ENVIRONMENT CONDITION INDUCED LESION).The phenotypic analysis indicates that these genes play important roles during leaf development.For the further genetic analysis of these genes and the map-based cloning of LL1 and LL2,we have mapped these genes to chromosome regions with an efficient and rapid mapping method.  相似文献   

8.
9.
One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem(ES)cells,which is used to produce gene-targeted mice for wide applications in biomedicine.However,a major bottleneck in this approach is that the robustness of germiine transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing,which impairs the efficiency and robustness of mouse model generation.Recently,we have established a new type of pluripotent cells termed extended pluripotent stem(EPS)cells,which have superior developmental potency and robust germline competence compared to conventional mouse ES cells.In this study,we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage.Based on gene targeting in mouse EPS cells,we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation,Haibo Li and Chaoran Zhao contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0556-1)contains supplementary material,which is available to authorized users.which could be accomplished in approximately 2 months.Importantly,using this approach,we successfully constructed mouse models in which the human interleukin 3(IL3)or interleukin 6(IL6)gene was knocked into its corresponding locus in the mouse genome.Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting,which have great application potential in biomedical research.  相似文献   

10.
Japanese encephalitis virus(JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus–host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope(E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.  相似文献   

11.
Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Jun-mian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P1, P2, F1, B1, B2 and F2 populations obtained from the cultivar cross. We found that resis-tance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F2 segregating population and resistance phenotypic data were obtained using F2︰3 families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and nondefoliating iso-lates. The markers associated with resistance QTL may facilitate the use of Verticillium wilt resistance genes in improving breeding programs for cotton.  相似文献   

12.
Chen L  Liu K  Zhao Z  Blair HT  Zhang P  Li D  Ma RZ 《遗传学报》2012,39(4):181-190
Off-season reproduction is a favorable economic trait for sheep industry.Hu sheep,an indigenous Chinese sheep breed,demonstrates a higher productivity of lambs and displays year-around oestrous behavior under proper nutrition and environment.The genetic basis behind these traits,however,is not well understood.In order to identify genes associated with the off-season reproduction,we constructed a suppression subtractive hybridization(SSH) cDNA library using pooled ovary mRNAs of 6 oestrous Hu females as a tester and the pooled ovary mRNAs of 6 non-oestrous Chinese Merino females as a driver.A total of 382 resulting positive clones were obtained after the SSH.We identified 114 differentially up-regulated genes in oestrous Hu sheep by using subsequent screening and DNA sequencing,of which 8 were previously known,93 were reported for the first time in sheep,and 13 were novel with no significant homology to any sequence in the DNA databases.Functions of the genes identified are related to cell division,signal transduction,structure,metabolism,or cell defense.To validate the results of SSH,6 genes(Ntrk2,Ppap2b,Htra1,Nid1,Serpine2 and Foxola) were selected for conformational analysis using quantitative real-time PCR(qRT-PCR),and two of them(Htral and Foxola) were verified by Northern blot.All of the 6 genes were differentially up-regulated in the ovary of oestrous Hu.It is obvious that off-season reproduction is a complex trait involving multiple genes in multiple organs.This study helps to provide a foundation for the final identification of functional genes involved in the sheep ovary.  相似文献   

13.
Cystatins are cysteine proteinase inhibitors,We found two expression sequence tags (ESTs),CA463109 and AV042522,from a mouse testis library using Digital differential display (DDD).By electricalhybridization,a novel gene,Cymgl(GenBank accession No.AY600990),which has a full length of 0.78 kb,and contains four exons and three introns,was cloned from a mouse testis eDNA library.The gene is locatedin the 2G3 area of chromosome 2.The full eDNA encompasses the entire open reading frame,encoding 141amino acid residues.The protein has a cysteine protease inhibitor domain that is related to the family 2cystatins but lacks critical consensus sites important for cysteine protease inhibition.These characteristicsare seen in the CRES subfamily,which are related to the family 2 cystatins and are expressed specifically inthe male reproductive tract.CYMG1 has a 44%(48/108)identity with mouse CRES and 30%(42/140)identity with mouse cystatin C.Northern blot analysis showed that the Cymgl is specifically expressed inadult mouse testes.Cell location studies showed that the GFP-tagged CYMG 1 protein was localized in thecytoplasm of HeLa cells,lmmunohistochemistry revealed that the CYMG1 protein was expressed in mousetestes spermatogonium,spermatocytes,round spermatids,elongating spermatids and spermatozoa.RT-PCRresults also showed that Cymgl was expressed in mouse testes and spermatogonium.The Cymgl expressionlevel varied in different developmental stages:it was low 1 week postpartum,steadily increased 2 to 5 weekspostpartum,and was highest 7 weeks postpartum.The expression level at 5 weeks postpartum was main-tained during 13 to 57 weeks postpartum.The Cymgl expression level in the testes over different develop-mental stages correlates with the mouse spermatogenesis and sexual maturation process.All these indicatethat Cymgl might play an important role in mouse spermatogenesis and sexual maturation. Cystatins are cysteine proteinase inhibitors,We found two expression sequence tags(ESTs),CA463109 and AV042522,from a mouse testis library using Digital differential display (DDD).By electricalhybridization,a novel gene,Cymgl(GenBank accession No.AY600990),which has a full length of 0.78 kb,and contains four exons and three introns,was cloned from a mouse testis eDNA library.The gene is locatedin the 2G3 area of chromosome 2.The full eDNA encompasses the entire open reading frame,encoding 141amino acid residues.The protein has a cysteine protease inhibitor domain that is related to the family 2cystatins but lacks critical consensus sites important for cysteine protease inhibition.These characteristicsare seen in the CRES subfamily,which are related to the family 2 cystatins and are expressed specifically inthe male reproductive tract.CYMG1 has a 44%(48/108)identity with mouse CRES and 30%(42/140)identity with mouse cystatin C.Northern blot analysis showed that the Cymgl is specifically expressed inadult mouse testes.Cell location studies showed that the GFP-tagged CYMG 1 protein was localized in thecytoplasm of HeLa cells,lmmunohistochemistry revealed that the CYMG1 protein was expressed in mousetestes spermatogonium,spermatocytes,round spermatids,elongating spermatids and spermatozoa.RT-PCRresults also showed that Cymgl was expressed in mouse testes and spermatogonium.The Cymgl expressionlevel varied in different developmental stages:it was low 1 week postpartum,steadily increased 2 to 5 weekspostpartum,and was highest 7 weeks postpartum.The expression level at 5 weeks postpartum was main-tained during 13 to 57 weeks postpartum.The Cymgl expression level in the testes over different develop-mental stages correlates with the mouse spermatogenesis and sexual maturation process.All these indicatethat Cymgl might play an important role in mouse spermatogenesis and sexual maturation.  相似文献   

14.
Cystatins are cysteine proteinase inhibitors. We found two expression sequence tags (ESTs), CA463109 and AV042522, from a mouse testis library using Digital differential display (DDD). By electrical hybridization, a novel gene, Cymg1 (GenBank accession No. AY600990), which has a full length of 0.78kb, and contains four exons and three introns, was cloned from a mouse testis cDNA library. The gene is located in the 2G3 area of chromosome 2. The full cDNA encompasses the entire open reading frame, encoding 141 amino acid residues. The protein has a cysteine protease inhibitor domain that is related to the family 2 cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the CRES subfamily, which are related to the family 2 cystatins and are expressed specifically in the male reproductive tract. CYMG1 has a 44% (48/108) identity with mouse CRES and 30% (42/140) identity with mouse cystatin C. Northern blot analysis showed that the Cymg1 is specifically expressed in adult mouse testes. Cell location studies showed that the GFP-tagged CYMG1 protein was localized in the cytoplasm of HeLa cells. Immunohistochemistry revealed that the CYMG1 protein was expressed in mouse testes spermatogonium, spermatocytes, round spermatids, elongating spermatids and spermatozoa. RT-PCR results also showed that Cymg1 was expressed in mouse testes and spermatogonium. The Cymg1 expression level varied in different developmental stages: it was low 1 week postpartum, steadily increased 2 to 5 weeks postpartum, and was highest 7 weeks postpartum. The expression level at 5 weeks postpartum was maintained during 13 to 57 weeks postpartum. The Cymg1 expression level in the testes over different developmental stages correlates with the mouse spermatogenesis and sexual maturation process. All these indicate that Cymg1 might play an important role in mouse spermatogenesis and sexual maturation.  相似文献   

15.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chro- mosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA phys- ically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

16.
17.
To identify genetic loci controlling grain weight, an elite indica rice variety, Baodali, with large grains was identified and used in this study. Its derived F2, F3 and BC2 F2 with another japonica rice variety Zhonghua 11 were used as mapping populations. Linkage analyses demonstrated that two genes controlling grain weight, designated as GW3 and GW6, were mapped to chromosome 3 and chromosome 6, respectively. Fine mapping delimited GW3 to a 122 kb physical distance between two sequence tagged site markers (WGWt6 and WGW19) containing 16 open reading frames annotated by The Institute for Genomic Research (http://www.tigr.org). GW6 was further mapped between two simple sequence repeat markers (RM7179 and RM3187). These results are useful for both marker assisted selection of grain weight, and for further cloning of GW genes, which will contribute to the dissection of the molecular mechanism underlying grain weight in rice.  相似文献   

18.
The control of flowering is not only important for reproduction,but also plays a key role in the processes of domestication and adaptation.To reveal the genetic architecture for flowering time and photoperiod sensitivity,a comprehensive evaluation of the relevant literature was performed and followed by meta analysis.A total of 25 synthetic consensus quantitative trait loci(QTL)and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development.Besides,a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits.Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize(Zea mays L.).Our results suggest that the combination of literature review,meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering.Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection,such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation.  相似文献   

19.
There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.  相似文献   

20.
To Investigate the mechanism of resistance to wheat (Triticum aestivum L.) powdery mildew, suppression subtractlve hybridization was conducted between an isogenic resistant line carrying Pm21 and its recurrent parent Yangmal 5 to Isolate the resistance relative genes. A cDNA fragment specifically expressed in the resistant line was obtained and its full length was cloned by in silico cloning and RT-PCR. This gene encoded a deduced protein of 219 amino acids with a leucine-rich repeat (LRR) motif, often found In plant resistance genes, and was designated as Ta-LRR2. Ta-LRR2 had an increased expression level in the resistant line after Inoculation with Erysiphe graminis DC. f. sp. tritici Marchal. PCR analysis with different cytogenetlc stocks suggested that Ta-LRR2 was specifically associated with chromosome arms 6VS and 6AS. Linkage analysis further showed that Ta-LRR2 could be used as a resistance gene analog polymorphism marker of Pm21 for marker-assisted selection in germplasm enhancement and breeding practice. Moreover, how to Isolate Pm21 based on the Information obtained for Ta-LRR2 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号