首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Day 10 of pseudopregnancy, rabbits were given an i.v. injection of hCG (10-20 i.u.) that was sufficient to cause new ovulations and the loss of follicular oestradiol secretion. There was an immediate 3-4-fold rise in serum progesterone which returned to near prestimulation values (approximately 27 ng/ml) within 12 h in the presence of an implant containing oestradiol-17 beta. In the absence of oestradiol, serum progesterone continued to decline to reach low values (approximately 4 ng/ml) within 24 h and the original corpora lutea subsequently regressed. The administration of oestradiol 24 h after injection of hCG, when progesterone secretion was low, arrested any further decline in progesterone and then restored serum progesterone to normal values. This steroidogenic effect of oestradiol in vivo was a function of enhanced luteal steroidogenesis; corpora lutea removed and incubated for 12 h produced progesterone at high, linear rates, whereas the corpora lutea from animals that did not receive oestradiol produced low or insignificant quantities of progesterone in vitro. We conclude that hCG at these doses is compatible with continued responsiveness of the corpora lutea to oestrogen and that hCG produces its luteolytic effect primarily by ovulating follicles, thus stopping the secretion of the luteotrophic hormone, oestradiol.  相似文献   

2.
The study was undertaken to investigate the steroid hormone production by sheep luteal cells. Corpora lutea were collected from 30 Olkuska sheep on Days 3, 6, 9, 12 and 15 of the estrous cycle during the reproductive season. In Experiment 1, steroid hormone concentration was estimated in extracts of CL. In Experiment 2, luteal cells were cultured in vitro for 24 h. Luteal cells isolated on Days 9 and 12 secreted high amounts of progesterone and androgens but smaller amounts of estradiol. Concentration of these steroids in CL extracts collected on the same days showed the same trend. In CL harvested on Day 15, a decrease in androgens and progesterone as well as a significant increase in estradiol were observed in culture media and in extracts. Judging from the high amounts of estradiol and low amounts of androgen observed at the end of the luteal phase, we speculate that the steroid hormones secreted by the regressing CL may play an active role in the regulation of the estrous cycle in the Olkuska sheep with autocrine influence on the luteal activity or a possible paracrine action on follicular growth.In the third Experiment, the possibility of heterogeneity in the multiple corpora lutea population of prolific Olkuska sheep was investigated. Differences were found in the level of progesterone and estradiol secretion by individual corpora lutea recovered from the same animal, which also varied in terms of weight. This is the first study which shows the existence of intra-ovarian and individual heterogeneity between corpora lutea recovered from ewes during the normal estrous cycle.  相似文献   

3.
The progesterone antagonists, mifepristone (RU-38,486) and onapristone (ZK-98,299), given as 2 mg daily, did not markedly affect lactation in rats. Both litter growth and time spent by 10-pup litters attached to their mothers were similar in antagonist-treated mothers and in solvent-treated controls. The progesterone antagonists did not affect the steroid content in corpora lutea remaining from the preceding pregnancy. Corpora lutea formed after post-partum ovulation also showed nearly normal function throughout the first 17 days of lactation. It is concluded that progesterone itself plays no role in the initiation or maintenance of luteal function when prolactin secretion is governed through an action independent of the ovaries, as through suckling. Antagonist-treated rats ovulated around Day 13 of lactation despite suckling. This ovulation was not associated with a decrease of progesterone production by the corpora lutea formed after post-partum ovulation. Apparently, elimination of progesterone action may protect corpora lutea from luteolysis. The latter finding indicates a possible role of progesterone in luteolysis and deserves further analysis.  相似文献   

4.
Two experiments involving crossbred ewes which lambed during the breeding season were performed to determine whether: (a) the interval to first postpartum ovulation could be reduced by weaning or mastectomy; (b) there are differences in luteal structure and luteinizing hormone (LH) receptor concentration between first postpartum corpora lutea induced with GnRH and normal cycling corpora lutea and (c) pretreatment of postpartum ewes with progesterone would affect luteal LH receptor concentration and luteal phase serum progesterone concentration.In experiment I, the mean interval (±SEM) to the first postpartum ovulation was 22.3 ± 1.1 days and was not significantly altered by weaning or mastectomy. More than half of the ewes had small, short-lived peaks of serum progesterone associated with short-lived corpora lutea prior to the normal luteal phase rise of serum progesterone. In experiment II, 2 h after GnRH injection on day 18 postpartum, serum LH concentrations were higher in ewes which received progesterone treatment on days 13 and 14 than in control ewes. Progesterone treatment did not affect mean corpus luteum weight (157 mg) or concentration of LH receptors (0.95 fmol/mg) in first postpartum corpora lutea, but progesterone-treated ewes had significantly higher endogenous serum progesterone concentrations on days 21–24. GnRH-induced corpora lutea from postpartum ewes were lighter in weight, paler in color, had lower LH receptor concentrations and had a more regressed histological appearance than corpora lutea of a similar age from normal, cycling ewes.  相似文献   

5.
Normal and abnormal corpora lutea were recovered from anoestrous Romney Marsh ewes on Days 3, 4, 5 and 6 after treatment with small-dose (250 ng) multiple injections of GnRH followed by a bolus injection (125 micrograms) with (+P) and without (-P) progesterone pretreatment and a study made of their characteristics in vitro. Plasma progesterone concentrations initially rose concurrently in all animals but abnormal luteal function occurred in 70% of the -P ewes and was defined on Day 5 when plasma progesterone concentrations declined relative to those in the +P ewes. All corpora lutea recovered on Days 3 and 4 appeared macroscopically similar and there were no significant differences between the +P and -P groups in terms of luteal weight, progesterone content and binding of 125I-labelled hCG on these days. However, corpora lutea from the -P animals only exhibited a decline in progesterone production in vitro on Day 4 (P less than 0.01), and morphological differences became apparent on Days 5 and 6 when the abnormal corpora lutea from the -P animals also decreased in weight (P less than 0.01) and progesterone content (P less than 0.001). Binding of 125I-labelled hCG increased on Day 5 in the normal corpora lutea only. These results show that, although abnormal luteal function induced by GnRH treatment of anoestrous ewes could not be distinguished from normal corpora lutea before Day 5 by measurement of progesterone in peripheral plasma, a significant decline in progesterone production in vitro occurred on Day 4 in the abnormal corpora lutea. This was followed by significant decreases in weight and progesterone content and a failure to increase 125I-labelled hCG binding. Abnormal corpora lutea are therefore capable of some initial growth and progesterone production, before undergoing a rapid and premature regression from Day 4, which has similar characteristics to natural luteolysis.  相似文献   

6.
Epinephrine can mimic the stimulatory effects of LH in vitro on cyclic AMP (cAMP) and progesterone production by isolated rat corpora lutea. The aim of the present study was to test whether the effects of epinephrine in vitro on the rat corpus luteum, as with LH, can be inhibited by prostaglandin F2 alpha (PGF2 alpha). The stimulatory effect of epinephrine on tissue levels of cAMP in 1-day-old corpora lutea was not inhibited by PGF2 alpha. A dose-dependent inhibition by PGF2 alpha (0.5-50 microM) was seen for 3-day-old corpora lutea and this inhibition could not be overcome by higher concentrations of epinephrine (0.165-165 microM). The stimulation by epinephrine on progesterone production was inhibited by PGF2 alpha (5 microM) in 3- and 5-day-old, but not in 1-day-old corpora lutea. Thus, PGF2 alpha can inhibit the stimulatory effect of epinephrine in 3- and 5-day-old corpora lutea, but not in the newly formed corpora lutea (1-day-old) and PGF2 alpha shows in this respect the same age dependent inhibitory pattern as in relation to LH stimulation.  相似文献   

7.
Aqueous extracts of frozen human corpora lutea were tested for the presence of an inhibitor of luteinizing hormone-receptor site binding (LHRBI) and for the subsequent effect on the stimulatory response of luteinizing hormone (LH) on progesterone synthesis by sheep ovarian cells. In the presence of human corpus luteum extract of normal menstrual cycle (30,000-g supernatant), the binding of 125I human chorionic gonadotrophin (hCG) to granulosa and luteal cells of sheep ovaries was markedly reduced, but the ability of rat testicular LH receptors to bind labelled hCG was less affected. However, extracts of corpora lutea of the first trimester of pregnancy appeared to be less inhibitory on the binding of LH/hCG to ovarian cells and had no effect on the binding of rat testicular cells compared to those of normal menstrual cycle. Addition of both extracts separately inhibited the LH-stimulated in vitro progesterone synthesis by granulosa cell cultures and by incubated sheep corpus luteum slices. These findings provide evidence for the presence of LHRBI in human corpus luteum.  相似文献   

8.
In mice, exposure of the uterus to seminal plasma at mating initiates an inflammatory response within the endometrium, which is characterized by production of cytokines that recruit and activate leukocytes. We hypothesized that this seminal plasma-induced inflammatory response would extend to the ovary, increasing leukocyte abundance within corpora lutea and potentially enhancing progesterone synthesis. Female mice mated to males with their seminal vesicles surgically removed exhibited fewer macrophages within corpora lutea on the day after mating, compared with females mated to vasectomized or normal, intact males. The mean number of F4/80-positive macrophages and major histocompatibility complex (MHC) class II-positive activated macrophages was approximately 2-fold fewer in the absence of seminal vesicle fluid. The effects of seminal plasma on macrophage abundance subsided by Day 4 and were not accompanied by a change in serum progesterone levels during luteinization (Days 1, 2, or 4 after mating) or luteolysis (Days 6 or 9). In vitro secretion of progesterone from corpora lutea cultured with or without LH also did not differ between treatment groups. There was no effect of seminal plasma deficiency in males on the number of ovulated ova or corpora lutea in females. These results imply that seminal plasma exposure of the female reproductive tract at mating augments the macrophage population of newly formed corpora lutea, although these additional macrophages seem not to play a role in steroidogenesis and may instead be involved in tissue remodeling within corpora lutea.  相似文献   

9.
The specific contents of cytochrome P-450scc and adrenodoxin in corpora lutea of late pregnant sheep were, respectively, 1/5 and 1/8 that of corpora lutea of the oestrous cycle, suggesting lower steroidogenic enzyme capacity in the former. The contents of Complex V proteins were also lower in the corpora lutea of late pregnancy. It was observed in the immunoblots of both Complex V and cytochrome P-450scc that immunoreactive bands of molecular weights lower than the native proteins were present in the samples from corpora lutea of late pregnancy, indicative of degradation of the native enzymes. It is concluded that corpora lutea of sheep during late pregnancy have a much lower enzyme capacity for steroidogenesis than do those of the oestrous cycle (mid-luteal phase) due to a reduction in the content of cytochrome P-450scc and adrenodoxin. The reduction in the levels of steroidogenic enzyme proteins appears to be unspecific and probably reflects an overall demise in mitochondrial functions.  相似文献   

10.
Induction of peroxidase in corpora lutea of rat ovary by lutropin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The lutropin-induced depletion of ascorbate in corpora lutea of albino-rat ovary is shown to be associated with the induction of peroxidase in corpora lutea. An inverse relationship between ascorbate depletion and peroxidase activity was established in a time-course study with lutropin. Analyses made at different phases of the reproductive cycle are in accord with this relationship. It is suggested that ascorbate, which is a well-established donor in peroxidase reactions, undergoes rapid oxidation in the presence of this enzyme, producing an intermediate free radical which, if coupled with pregnenolone, might produce progesterone in the corpora lutea. The exact role of peroxidase in steroidogenesis, however, remains to be elucidated and established.  相似文献   

11.
The effects of active immunization against progesterone on reproductive activity were studied in Merino ewes. Immunization against progesterone caused a shortening (P less than 0.01) of the interval between ovulations from 17-18 days (controls) to between 6 and 10 days (immunized group); this was associated with a corresponding reduction in the interval between LH surges. The immunized ewes also had higher (P less than 0.05) ovulation rates (1.72) than controls (1.25) and exhibited a reduced (P less than 0.01) incidence of oestrus (26% v. 95%). Many immunized ewes continued to ovulate despite the persistence of corpora lutea from earlier ovulations which led to an accumulation on the ovaries of many corpora lutea of different ages. The frequency of LH pulses in ewes immunized against progesterone (1.8 +/- 0.2 pulses/4 h) was significantly (P less than 0.001) higher than that of control ewes (0.3 +/- 0.1 pulses/4 h). This study highlights the importance of progesterone in the control of oestrus, ovulation, ovulation rate, luteal regression and the secretion of LH in the ewe.  相似文献   

12.
Two experiments were conducted to determine the effects of immunization of ewes with progesterone-11alpha hemisuccinate coupled to bovine serum albumin (P-BSA) on estrous cycles, serum progesterone and fertility. In experiment I, ewes were immunized during the first estrous cycle in September and observed through January. Immunization against progesterone increased (P<.01) the proportion of estrous cycles of abnormal length. Two general patterns were evident in the ten ewes which were immunized against progesterone: 4 continued to show cyclic patterns of estrous activity throughout the experimental period and 6 entered periods of anestrus characterized by presence of corpora lutea. Apparent, aberrant, estrous activity and shortened luteal phases were also observed in ewes which were immunized against progesterone. In experiment II, immunization against progesterone caused serum progesterone concentrations to be 4 to 8 times higher (P<.01) than ewes which were immunized against bovine serum albumin. Fertility was reduced (P<.01) by immunization with P-BSA. In experiment II, immunization against progesterone shortened (P<.01) the second estrous cycle post-immunization, and at day 13 of the third cycle corpora lutea in P-BSA-immunized ewes were regressing and were lighter (P<.05) than in ewes which were immunized with bovine serum albumin.  相似文献   

13.
The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities.  相似文献   

14.
Porcine luteal cells were collected from corpora lutea in four different stages of the luteal phase and cultured as monolayers. Progesterone (P4) secretion was assayed using radioimmunoassays (Gregoraszczuk, 1991). Luteal cells cultured from porcine corpora lutea collected in the early luteal phase maintained steroidogenic capacity for 6 days in culture until the time comparable with midluteal corpora lutea. Luteal cells collected from mature and regressing corpora lutea did not dedifferentiate during 2 days of culture. After this time secretion of progesterone decreased to undetectable amounts characteristic of old corpora lutea. The regression in the culture progressed. The results demonstrate that the degree of the decline of progesterone depends on the type of corpus luteum, which is connected to particular time intervals of the luteal phase. Before starting experiments it is necessary to take into consideration the stage of the luteal phase from which the material is collected for culture. This study provides evidence that long term culture is useful for investigating a variety of aspects of luteal function only if cells are collected in the early luteal phase. Short term culture is suitable for investigation of cells collected from mid and late luteal phase. Regulation of luteal function is dependent on stage of the luteal phase.  相似文献   

15.
A total of 48 corpora lutea from the right and left ovaries of 2 gilts on Day 9 and 2 gilts on Day 13 of the oestrous cycle were analysed for gonadotrophin binding, progesterone concentration and 3 enzyme activities. The weights of corpora lutea from the right and left ovaries on Days 9 and 13 did not differ, but the values on Day 13 were lower than those on Day 9. The specific binding of 125I-labelled hCG, progesterone concentration, and activities of cytochrome c oxidase (a mitochondrial enzyme), beta-N-acetyl-D-glucosaminidase (a lysosomal enzyme) and glucose 6-phosphate dehydrogenase (a cytosol enzyme) differed, with some exceptions, among the corpora lutea within the same ovaries and those from the right and left ovaries on Days 9 and 13 of the cycle. The gonadotrophin binding differences amongst the corpora lutea appeared to be due to the differences in the total number of available receptors rather than in the receptor affinities. There was no strict correspondence between the magnitude of gonadotrophin binding and luteal progesterone concentration. These data show that porcine corpora lutea within the same ovaries, and those from the right and the left ovary, are quite dissimilar.  相似文献   

16.
The method of quantitative histoenzymological analysis was used to determine the extent of participation of various structures of the ovary in the provision of the preovulatory synthesis of sex hormones. The activity of steroid dehydrogenases (3beta, 17beta, and 20alpha-OH), glucoso-6phosphric dehydrogenases, NAD and NADP-diaphorases was investigated. The synthesis of sex hormones proved to be realized by the mobilization of all the ovarian structures. At the early proestrus enhanced estrogen synthesis was provided by mature follicles, interstitial glands and the old corpora lutea. In the mid proestrus the active sources of progesterone and 20alpha-hydroxypregh-4en-3on synthesis are young corpora lutea and follicles; at this time the interstitial glands and old corpora lutea synthesized mainly the progesterone derivative.  相似文献   

17.

Background  

In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL), which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP), in which the CL are mainly under the control of pituitary prolactin (PRL), is not well known. The objectives of this investigation were: i) to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD), involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD), involved in progesterone catabolism; and ii) to determine the role of decidualization on progesterone metabolism in PSP.  相似文献   

18.
Epinephrine can mimic the stimulatory effects of LH in vitro on cyclic AMP (cAMP) and progesterone production by isolated rat corpora lutea. The aim of the present study was to test whether the effects of epinephrine in vitro on the rat corpus luteum, as with LH, can be inhibited by prostaglandin F2a (PGF2a. The stimulatory effect of epinephrine on tissue levels of cAMP in 1-day-old corpora lutea was not inhibited by PGF2. A dose-dependent inhibition by PGF2a (0.5–50 μM) was seen for 3-day-old corpora lutea and this inhibition could not be overcome by higher concentrations of epinephrine (0.165–165 μM). The stimulation by epinephrine on progesterone production was inhibited by PGF2a (5 μM) in 3- and 5-day-old, but not in 1-day-old corpora lutea. Thus, PGF2a can inhibit the stimulatory effect of epinephrine in 3- and 5-day-old corpora lutea, but not in the newly formed corpora lutea (1-day-old) and PGF2a shows in this respect the same agedependent inhibitory pattern as in relation to LH stimulation.  相似文献   

19.
Three experiments investigated the effects of progesterone on the incidence of corpora lutea with normal life-span in seasonally anovulatory Merino ewes induced to ovulate by the introduction of rams.Ewes in Experiments 1 and 2 received a single i.m. injection of 20 mg progesterone in oil at the time of, or up to 5 days before introduction of rams. Control ewes received oil alone. Progesterone priming had no effect on the proportion of ewes induced to ovulate, and the beneficial effect of progesterone on the proportion of corpora lutea with a normal life-span (P < 0.001, Experiment 1; P < 0.01, Experiment 2) was independent of its time of administration. Injection of progesterone delayed the time of the surge of LH compared to control ewes (P < 0.001), but only when given at the time of introduction of rams.Administration of progesterone by intravaginal devices for 6 h, 12 h or 24 h before introduction of rams (Experiment 3) increased the incidence of corpora lutea with normal luteal life-span compared to control ewes, but had no effect on the proportion of ewes ovulating. The incidence of corpora lutea with a normal life-span was significantly and positively correlated (R=0.977; P < 0.05) with duration of progesterone priming before introduction of rams.These results indicate that duration but not timing of progesterone priming is critical to its ability to eliminate short life-span corpora lutea. Such findings support the concept of a mode of action of progesterone at the ovarian level.  相似文献   

20.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号