首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1,646 cm-1 band in a resonance Raman spectrum obtained with excitation in the charge-transfer band of the complex of oxidized D-amino acid oxidase (DAO) with the oxidation product of D-lysine catalyzed by DAO shifted to 1,617 cm-1 upon 2-13C substitution of lysine. Thus, the band is assigned to a C(2) = C(3) stretching mode of the enamine, delta 2-piperideine-2-carboxylate (En). In the enzyme-free solution, the product is preferentially in the cyclic imine form, delta 1-piperideine-2-carboxylate (Im). Thus, DAO has a higher affinity for the enamine form than for the imine form. The pH effects on the affinity of DAO for the product and on the molar absorption coefficient at 630 nm in the charge-transfer band, suggest that the enzyme-bound product is En in the neutral form at the N atom. As the value of observed rate constant between DAO and the product was constant at high product concentrations, the binding mechanism can be explained as follows; E + Im in equilibrium with EIm in equilibrium with EEN: rapid bimolecular and slow unimolecular processes. The isomerization of the imine form to the enamine form proceeds in the slow process. The low affinity of Im for DAO may be due to a steric repulsion of the hydrogen atoms of Im at C(3) in the active site. The hydrogen atoms of a substrate D-amino acid at C(3), which correspond to the C(3) hydrogens of Im, may act repulsively in the active site and the repulsive energy may induce strain or distortion of the substrate and the enzyme, accelerating the catalytic reaction.  相似文献   

2.
A series of N-blocked L-proline-containing compounds and their derivatives were synthesized. Their inhibitory activities for prolyl endopeptidase from bovine brain were examined and compared with that of N-benzyloxycarbonyl-L-prolyl-L-prolinal, which is the most effective enzyme inhibitor hitherto reported. Introduction of a sulfur atom into pyrrolidine ring quite effectively increased the inhibitory activity: replacement of pyrrolidine with thiazolidine or thiazolidine aldehyde (thioprolinal) and conversion of L-proline to L-thioproline residue resulted in increase in the inhibitory activity. Thus, N-benzyloxycarbonyl-L-thioprolyl-thiazolidine (Z-Thiopro-thiazolidine) and Z-L-Thiopro-L-thioprolinal showed Ki values of 0.36 and 0.01 nM, respectively, for prolyl endopeptidase from bovine brain; both values were significantly lower than that of Z-Pro-prolinal (Ki, 3.7 nM).  相似文献   

3.
硫对石灰性土壤化学性质的影响   总被引:4,自引:0,他引:4  
张昌爱  张民  曾春 《应用生态学报》2007,18(7):1453-1458
通过连续两茬油菜盆栽试验,分析了硫对土壤pH、电导率、交换性阳离子和水溶性阴离子等指标的影响.结果表明:硫能显著降低土壤pH、增加土壤电导率;施硫会使土壤交换性Na+和交换性K+含量升高,并加剧土壤水溶性阴离子总量的累积;施硫对交换性Ca2+和Mg2+含量影响较小,也未能显著改变土壤阳离子交换量和土壤碱化度.与尿素相比,硫包膜尿素对土壤pH和电导率的影响不显著,但对交换性阳离子和水溶性阴离子影响较大;与尿素处理相比,施硫未表现出明显的增产效应;施硫较多时,油菜产量显著降低.  相似文献   

4.
The photosensitized oxygenation of diphenyl (1), di-tert-butyl (2) and phenyl tert-butyl sulfide (3) was studied. Bimolecular rate constants of singlet oxygen quenching are low (1 to 5 x 10(4) M(-1)s(-1)) since the sulfides are poor nucleophiles due to sterical hindrance (2, 3) or the HOMO on the sulfur atom being a less accessible p(z) orbital (1). The quenching is mainly physical, but chemical reaction leading to sulfoxides also takes place in methanol and, to a lower degree, in acetonitrile. Catalysis by carboxylic acids considerably enhances the rate of sulfoxidation. Inefficiency in the chemical reaction is again due to the poor nucleophilicity of the sulfides, which limits oxygen transfer by electrophilic intermediates such as the protonated persulfoxide.  相似文献   

5.
N-nitrosamine is a class of carcinogenic, mutagenic, and teratogenic compounds, which can be produced from N-nitrosation of amine by nitrosating agents. N-nitrosation of 19 amines (eight acyclic amines, five heterocyclic amines, and six amines with unsaturated groups) by N2O3 was investigated at the CBS-QB3 level of theory. The results indicate that generally the heterocyclic amines have the highest reactivities among the three kinds of amines, whereas the reactivities of the amines with unsaturated and electron-withdrawing groups are relatively low. Frontier molecular orbital analysis indicates that the energy gap between the HOMO of an amine and the LUMO of N2O3 has a close connection with the reactivity of an amine. A structure-reactivity relationship of amines in the N-nitrosation reactions by N2O3 was established using the stepwise multivariate linear regression. The results indicate that the reactivity of an amine has a definite relationship (Radj2 = 0.947) with the heterolytic bond dissociation energy of R1R2N-H bond, energy of HOMO, NBO occupancy of the natural lone pair orbital of N atom, the NBO charge of the N atom, and the pyramidalization angle of an amine. This work will be helpful to gain more insight into the N-nitrosation reactions.  相似文献   

6.
A new complex of zinc with a Schiff base, zinc(N,N′-bis(salicylidene)-3, 6-dioxa-1, 8-diaminooctane monohydrate) (ZnBSO · H2O), was synthesized and characterized by means of elemental analyses, IR spectra and DTA-TG. Its structure was determined by X-ray single crystal analysis. It was demonstrated that the zinc atom is coordinated by the two oxygen atoms in phenolate and two nitrogen atoms in imine of the ligand in a slightly distorted tetrahedral geometry, while the two oxygen atoms from the oxa-alkyl chain are not coordinated to Zn(II) atom. The energy levels of the HOMO, LUMO and the electrochemical band gap were determined by cyclic voltammeter. The electroluminescent devices with the complex as the emitter showed bright blue emission with a peak at 450 nm, which is same as the fluorescence of the complex in both solution and solid states.  相似文献   

7.
A new chiral perylene monoanhydride monoimide (1) with a sterically hindered chiral amine was successfully synthesized for further selective functionalization at terminal positions. At the same time, the chiral perylene diimide (2) with the same amine has been synthesized. The synthesized products were characterized using the data from NMR, IR, MS, UV-vis, DSC, TGA, elemental analysis and cyclic and square wave voltammetry. Compound 2 shows an excellent solubility of 200 mg mL(-1) in chloroform. The band gap energy (Eg), LUMO and HOMO energy values were 2.28, -3.77 and -6.05 eV for 2, respectively in chloroform. In solid state, the band gap energy (Eg), LUMO and HOMO energy values were 1.96, -4.22 and -6.18 eV for 1 and 1.92, -4.13 and -6.05 eV for 2, respectively. Whereas 1 (solid state: -0.58 and -0.69 V vs. ferrocene/ferrocenium couple) and 2 (in chloroform: -1.03 and -1.22 V vs. ferrocene/ferrocenium couple) show two reversible reduction steps, 2 exhibits only one reversible wave (solid state: -0.67 V vs. ferrocene/ferrocenium couple). The diffusion coefficients were determined as 1.91 x 10(-7) and 8.47 x 10(-7) cm2 s(-1) for 1 and 2 in solid state, respectively, and 1.27 x 10(-5) cm2 s(-1) for 2 in solution. The solid state emission ability of the chiral products ( is much more emissive than ) remains a challenge for photonic, electronic and sensor applications. 1 and 2 showed high thermal stability. Efficient prevention of intermolecular pi-pi contacts of fluorophores results in an excellent fluorescence emission in solid state and solubility for 2.  相似文献   

8.
Quantum-chemical calculations {DFT(B3LYP)/6-311+G(d,p)} were performed for all possible tautomers (aromatic and nonaromatic) of neutral 2- and 4-aminopyridines and their oxidized and reduced forms. One-electron oxidation has no important effect on the tautomeric preference for 2-aminopyridine. The amine tautomer is favored. However, oxidation increases the stability of the imine NH tautomer, and its contribution in the tautomeric mixture cannot be neglected. In the case of 4-aminopyridine, one-electron oxidation increases the stability of both the amine and imine NH tautomers. Consequently, they possess very close energies. As major tautomers, they dictate the composition of the tautomeric mixture. The CH tautomers may be considered as very rare forms for both neutral and oxidized aminopyridines. A reverse situation takes place for the reduced forms of aminopyridines. One-electron reduction favors the C3 atom for the labile proton for both aminopyridines. This may partially explain the origin of the CH tautomers for the anionic states of nucleobases containing the exo NH(2) group.  相似文献   

9.
The atomic and electronic structures of heme complexes with His, Gly, and Cys residues (Heme–His, Heme–Gly, and Heme–Cys) in the fifth coordination position of the Fe atom and with oxygen and nitrogen oxide molecules in the sixth Fe position were studied by the semiempirical quantum-chemical method PM3. A comparative analysis of internuclear distances showed that the strength of chemical bonding between the ligand molecules (oxygen and nitrogen oxide) is greater for Heme–Cys than for Heme–His and Heme–Gly complexes. Consequently, the strengthening of the chemical bond of the oxygen (or nitrogen oxide) molecule with Heme–Cys substantially weakens the chemical bond in the ligand molecule. The Mulliken population analysis showed that the electronic density of ligand (oxygen or nitrogen oxide) p-orbitals is transferred to the d-orbitals of the Fe atom, whose charge, calculated according to the Mulliken analysis, formally becomes negative. In the Heme–His complex with oxygen, this charge is substantially greater than in the complex with NO, and the oxygen molecule becomes polarized. No oxygen polarization is observed in the Heme–Cys complex, and the electron density (judging from the change in the Fe charge) is transferred to the coordinated sulfur atom. This is also characteristic of Heme–Cys complexes with nitrogen oxide. An analysis of charges on the atoms indicates that the character of chemical bonding of the oxygen molecule in Heme–Cys and Heme–Gly complexes is similar and basically differs from that in the case of the Heme–His complex.  相似文献   

10.
RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.  相似文献   

11.
The consequences of one-electron oxidation and one-electron reduction were studied for 4-aminopyrimidine (4APM), which displays prototropic tautomerism. Since experimental techniques are incapable of detecting less than 0.1% of minor tautomers, quantum-chemical calculations [DFT(B3LYP)/6-311+G(d,p)] were carried out for all possible tautomers of neutral 4AMP and its redox forms, 4APM (+ ?) and 4APM (- ?). Four tautomers were considered: one amine and three imine tautomers (two NH and one CH form). Geometric isomerism of the exo?=?NH group was also taken into account. One-electron oxidation (4APM - e → 4APM (+??)) has no significant effect on the tautomeric preferences; it influences solely the composition of the tautomeric mixture. The amine tautomer is favored for both 4APM (+??) and 4APM. An interesting change in the tautomeric preference occurs for 4APM (- ?). One-electron reduction (4APM?+?e → 4APM (- ?)) favors the C5 atom for the labile proton. The preference of the imine CH tautomer in the tautomeric mixture of 4APM (- ?) may partially explain the origin of CH tautomers in nucleobases.  相似文献   

12.
Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140?×?10(-4)?a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.  相似文献   

13.
14.
Cation-pi interaction, a prominent feature in agonist recognition by neurotransmitter-gated ion channels, does not apply to the anomalous action of neonicotinoids at the insect nicotinic acetylcholine receptor (nAChR). Insect-selective neonicotinoids have an electronegative pharmacophore (tip) in place of the ammonium or iminium cation of the vertebrate-selective nicotinoids, suggesting topological divergence of the agonist-binding sites in insect and vertebrate nAChRs. This study defines the molecular and electronic basis for the potent and selective interaction of the neonicotinoid electronegative pharmacophore with a unique subsite of the Drosophila but not of the vertebrate alpha4beta2 nAChR. Target site potency and selectivity are retained when the usual neonicotinoid N-nitroimine (=NNO(2)) electronegative tip is replaced with N-nitrosoimine (=NNO) or N-(trifluoroacetyl)imine (=NCOCF(3)) in combination with an imidazolidine, imidazoline, thiazolidine, or thiazoline heterocycle. X-ray crystallography establishes coplanarity between the heterocyclic and imine planes, including the electronegative substituent in the trans configuration. The functional tip is the coplanar oxygen atom of the N-nitrosoimine or the equivalent oxygen of the N-nitroimine. Quantum mechanics in the gas and aqueous phases fully support the conserved coplanarity and projection of the strongly electronegative tip. Further, a bicyclic analogue with a nitro tip in the cis configuration but retaining coplanarity has a high potency, whereas the N-trifluoromethanesulfonylimine (=NSO(2)CF(3)) moiety lacking coplanarity confers very low activity. The coplanar system between the electronegative tip and guanidine-amidine moiety extends the conjugation and facilitates negative charge (delta(-)) flow toward the tip, thereby enhancing interaction with the proposed cationic subsite such as lysine or arginine in the Drosophila nAChR.  相似文献   

15.
Catalytic antibody 27C1 bears binding sites for both a substrate- and a functionalized small nonprotein component in the active site. We investigated the possibility of exploiting imine and enamine intermediates using a primary amine molecule into the active site of antibody 27C1. The antibody catalyzed β-keto acid decarboxylation with a rate enhancement (kcat/Km/kuncat) of 140,000, as well as highly regioselective cross-aldol reactions of ketones and p-nitrobenzaldehyde. These studies provide new strategies for the generation of catalytic antibodies possessing binding sites for functionalized components.  相似文献   

16.
C Kemal  J R Knowles 《Biochemistry》1981,20(13):3688-3695
The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.  相似文献   

17.
The electron affinities of beryllium and magnesium tetramers are calculated at the ROMP2 level employing the Dunning-type aug-cc-pVQZ basis set. The vertical electron detachment energy (VEDE) amounts to 1.685 eV for Be4 and 0.943 eV for Mg4 . The decomposition of the VEDE into physical components and an atomic orbital population analysis are used to elucidate the nature of the outer electron binding in these anions.Figure The lowest unoccupied molecular orbitals in the ground state of Mg4 : a LUMO, symmetry A1, b LUMO + 1, symmetry T2; c the highest occupied molecular orbital (HOMO), symmetry A1 in the ground state of Mg4.   相似文献   

18.
Photoionization of an atom by X-rays usually removes an inner shell electron from the atom, leaving behind a perturbed "hollow ion" whose relaxation may take different routes. In light elements, emission of an Auger electron is common. However, the energy and the total number of electrons released from the atom may be modulated by shake-up and shake-off effects. When the inner shell electron leaves, the outer shell electrons may find themselves in a state that is not an eigen-state of the atom in its surroundings. The resulting collective excitation is called shake-up. If this process also involves the release of low energy electrons from the outer shell, then the process is called shake-off. It is not clear how significant shake-up and shake-off contributions are to the overall ionization of biological materials like proteins. In particular, the interaction between the outgoing electron and the remaining system depends on the chemical environment of the atom, which can be studied by quantum chemical methods. Here we present calculations on model compounds to represent the most common chemical environments in proteins. The results show that the shake-up and shake-off processes affect approximately 20% of all emissions from nitrogen, 30% from carbon, 40% from oxygen, and 23% from sulfur. Triple and higher ionizations are rare for carbon, nitrogen, and oxygen, but are frequent for sulfur. The findings are relevant to the design of biological experiments at emerging X-ray free-electron lasers.  相似文献   

19.
In carotenoids the lowest energetic optical transition belonging to the pi-electron system is forbidden by symmetry, therefore the energetic position of the S(1) (2(1)A(g)) level can hardly be assessed by optical spectroscopy. We introduce a novel experimental approach: For molecules with pi-electron systems the transition C1s-->2p(pi*) from inner-atomic to the lowest unoccupied molecular orbital (LUMO) appears in X-ray absorption near edge spectra (NEXAFS) as an intense, sharp peak a few eV below the carbon K-edge. Whereas the peak position reflects the energy of the first excited singlet state in relation to the ionization potential of the molecule, intensity and width of the transition depend on hybridization and bonding partners of the selected atom. Complementary information can be obtained from ultraviolet photoelectron spectroscopy (UPS): At the low binding energy site of the spectrum a peak related to the highest occupied molecular orbital (HOMO) appears. We have measured NEXAFS and UPS of beta-carotene. Based on these measurements and quantum chemical calculations the HOMO and LUMO energies can be derived.  相似文献   

20.
Using the Iterative Extended Hucken Theory (IEHT) calculations of the elctron distribution and orbital energies of a series of thirteen amines, nitriles and amino-nitriles relevant to prebiotic and cosmo-chemistry have been carried out. Ground state properties such as the energy and nature of the highest occupied (HOMO) and lowest empty (LEMO) molecular orbitals, net atomic charges and number of non-bonding electrons have been identified as criteria for correlating the relative nucleophilicity of amine and nitrile nitrogens and the electrophilicity of nitrile and other unsaturated carbon atoms. The results of such correlations can be partially verified by known chemical behavior of these compounds and are used to predict and understand their role in prebiotic organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号