首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant adeno-associated virus (rAAV) vectors allow for sustained expression of transgene products from mouse liver following a single portal vein administration. Here a rAAV vector expressing human coagulation factor F.IX (hF.IX), AAV-EF1alpha-F.IX (hF.IX expression was controlled by the human elongation factor 1alpha [EF1alpha] enhancer-promoter) was injected into mice via the portal vein or tail vein, or directly into the liver parenchyma, and the forms of rAAV vector DNA extracted from the liver were analyzed. Southern blot analyses suggested that rAAV vector integrated into the host genome, forming mainly head-to-tail concatemers with occasional deletions of the inverted terminal repeats (ITRs) and their flanking sequences. To further confirm vector integration, we developed a shuttle vector system and isolated and sequenced rAAV vector-cellular DNA junctions from transduced mouse livers. Analysis of 18 junctions revealed various rearrangements, including ITR deletions and amplifications of the vector and cellular DNA sequences. The breakpoints of the vector were mostly located within the ITRs, and cellular DNA sequences were recombined with the vector genome in a nonhomologous manner. Two rAAV-targeted DNA sequences were identified as the mouse rRNA gene and the alpha1 collagen gene. These observations serve as direct evidence of rAAV integration into the host genome of mouse liver and allow us to begin to elucidate the mechanisms involved in rAAV integration into tissues in vivo.  相似文献   

2.
An autonomously replicating segment, ARS, is located 293 base pairs downstream from the histone H4 gene at the copy-I H3-H4 locus. The sequences needed for autonomous replication were defined by deletion analysis to include an ARS consensus sequence and an additional 3'-flanking region. External deletions into the 3'-flanking yeast sequences resulted in a loss of replication function. However, disruptions of the required 3'-flanking domain by either 10-base-pair linker-scanning substitutions or larger internal deletions did not impair autonomous replication. Thus, replication is dependent upon a flanking chromosome domain, but not an exact DNA sequence. The extent of the yeast sequences required in the 3'-flanking domain is variable depending on the nature of neighboring plasmid vector sequences. That is, there are certain vector sequences that prohibit replication when they are placed too close to the ARS consensus. These results suggest that the functional 3'-flanking domain of the H4 ARS is a specific DNA or chromatin structure or both.  相似文献   

3.
Dennis JJ  Zylstra GJ 《BioTechniques》2002,33(2):310, 312, 314-310, 312, 315
A method was devised for generating nested deletions in DNA that exploits the difference in frequency of restriction sites recognized by compatible restriction endonucleases. A cloning vector was constructed that contains no common blunt-end or RsaI restriction sites and two 8-bp blunt-end restriction sites flanking a commodious multiple cloning site. DNA fragments are cloned into the multiple cloning site using blue-white selection, and nested deletions are generated by digesting the resulting plasmid with either SwaI or PmeI and partially digesting the insert DNA with RsaI. The DNAs are ligated and transformed, producing afamily of plasmids with different-sized deletions. The DNA sequence of these inserts can be rapidly determined, and the overlapping sequences can be assembled in silico to produce a large DNA contig. Nested deletions generated in this manner can also be used for the structure-function analysis of proteins.  相似文献   

4.
We used a replication-competent retrovirus shuttle vector based on a DNA clone of the Schmidt-Ruppin A strain of Rous sarcoma virus to characterize rearrangements in circular viral DNA. In this system, circular molecules of viral DNA present after acute infection of cultured cells were cloned as plasmids directly into bacteria. The use of a replication-competent shuttle vector permitted convenient isolation of a large number of viral DNA clones; in this study, over 1,000 clones were analyzed. The circular DNA molecules could be placed into a limited number of categories. Approximately one-third of the rescued molecules had deletions in which one boundary was very near the edge of a long terminal repeat (LTR) unit. Subtle differences in the patterns of deletions in circular DNAs with one versus two copies of the LTR sequence were observed, and differences between deletions emanating from the right and left boundaries of the LTR were seen. A virus with a missense mutation in the region of the pol gene responsible for integration and exhibiting a temperature sensitivity phenotype for replication had a marked decrease in the number of rescued molecules with LTR-associated deletions when infection was performed at the nonpermissive temperature. This result suggests that determinants in the pol gene, possibly in the integration protein, play a role in the generation of LTR-associated deletions. Sequences in a second region of the genome, probably within the viral gag gene, were also found to affect the types of circular viral DNA molecules present after infection. Sequences in this region from different strains of avian sarcoma-leukosis viruses influenced the fraction of circular molecules with LTR-associated deletions, as well as the relative proportion of circular molecules with either one or two copies of the LTR. Thus, the profile of rearrangements in unintegrated viral DNA is complex and dependent upon the nature of sequences in the gag and pol regions.  相似文献   

5.
Recombinant plasmid DNA cloned in E. coli via the bifunctional vector pDH5060 suffered deletions when returned to B. subtilis. However, DNA preparations of identical chimeras containing homologous or heterologous sequences stably transformed B. subtilis at high efficiency when isolated from B. subtilis. The vector pDH5060, however, was not affected and could be stably shuttled between E. coli and B. subtilis at high frequency. These problems affected the transfer of clone pools and individual chimeras, irrespective of the restriction or recombination phenotype of B. subtilis recipients. Deleted chimeras lost at least one end of cloned inserts, and in most cases, flanking plasmid sequences. Single plasmid forms (intact or deleted) were isolated from several hundred individual Cmr-transformants this suggests that events leading to deletion of chimeric plasmid DNA occur during transformation by restriction of unmodified insert sequences propagated in the intermediate host, E. coli. This conclusion is discussed with regard to the mechanism of plasmid transformation in B. subtilis.  相似文献   

6.
DNA fragments derived from the left end of Herpesvirus saimiri 11 L-DNA were cloned in Escherichia coli by using vector pBR322. Deletions were introduced within a cloned 7.4-kilobase-pair sequence by using restriction endonucleases that cut once or twice within this sequence. Permissive owl monkey kidney-cultured cells were transfected with parental strain 11 viral DNA plus cloned DNA with specific sequences deleted. By screening the progeny of these transfections with a limiting-dilution spot hybridization assay, we isolated recombinant viruses containing deletions in this region. A contiguous 4.5-kilobase-pair sequence representing 4.1% of the coding capacity of the virus was found to be unnecessary for virus replication in cultured cells. These deletion mutants will allow us to test whether sequences in this region are required for the lymphoma-inducing capacity of H. saimiri. These same procedures should also allow us to introduce foreign DNA sequences into this region for studying their expression.  相似文献   

7.
A series of spontaneous and ethyl methanesulfonate-induced 6-thioguanine-resistant mutants were isolated in the CHO-10T5 cell line. This cell line was constructed by the introduction of a shuttle vector containing the Escherichia coli gpt gene into a hypoxanthine-guanine phosphoribosyltransferase deficient derivative of the Chinese hamster cell line CHO-K1. Shuttle vector sequences were recovered from many of the mutant cell lines by the COS cell fusion technique and the DNA base sequence of the gpt genes was determined whenever possible.

The base sequences were determined for gpt genes recovered from 29 spontaneous mutants. Of these 29 mutants, 9 have single base substitutions, 1 has a small duplication, 17 have simple deletions, 1 has a deletion with additional bases inserted at the deletion site, and 1 has no change in the gpt coding sequence. Many of the deletions were less than 20 basepairs in length and several occurred in a region previously observed to be a hotspot for spontaneous deletions. The generation of the deletion/insertion mutation may have involved a quasi-palindromic intermediate.

A total of 59 ethyl methansesulfonate-induced mutants were isolated and vector sequences were recovered from 50 mutants. All 50 mutants sequenced had single base substitutions and most (45) were G:C to A:T transitions. While there were no strong hotspots in this collection of mutations, the site distribution was obviously nonrandom. Many of the G:C to A:T transitions either produced a nonsense codon or occurred at glycine codons.  相似文献   


8.
Human adenovirus type 5 (Ad5) contains a 36-kb double-stranded DNA molecule in an icosahedral capsid. Attempts to construct Ad5 insertion mutants containing DNA of more than about 105% of the genome size resulted in viral progeny in which deletions had occurred suggesting the existence of severe constraints on the size of packageable DNA molecules. To partially circumvent these constraints we used an adenovirus vector, Ad5dlE1,3, with deletions in early regions 1 (E1) and 3 for a total net reduction in genome size of 5349 bp and an expected capacity for inserts of greater than 7 kb. To use this vector efficiently we generated a circular form of dlE1,3 DNA which could be propagated as an infectious bacterial plasmid. When this plasmid was used as a recipient for inserts of various sizes it was found that its capacity was much less than expected and that dlE1,3 virion capsids could not even package DNA as large as the wt genome. Because the E1 deletion of dlE1,3 extends into the coding sequences for protein IX, a minor capsid component known to affect the heat stability of adenovirions, the possibility that absence of this polypeptide might also affect the DNA capacity of the virion was investigated. It was found that when the coding sequences for protein IX were restored the packaging capacity of the vector was also restored to that of wt virions. Thus protein IX is an essential constituent of virion capsids dispensable only for virions containing DNA of less than genomic size.  相似文献   

9.
10.
V Razanamparany  J Bégueret 《Gene》1988,74(2):399-409
Transformation of the ura5-6 mutant strain of Podospora anserina with a recombinant vector carrying the ura5+ gene often results in the integration of the transforming plasmid by non-homologous recombination outside of the genomic ura5 locus. To investigate the mechanism of such integration, we rescued the integrated plasmid from three transformants. In two cases, the rescued plasmid was highly altered compared with the original transforming vector. We cloned the junctions between plasmidic DNA and genomic DNA of the transformants and determined their nucleotide sequences. It was found that there was little homology between plasmidic and genomic DNA sequences. Moreover, in all cases deletions of plasmid sequences at the integration site had occurred. These rearrangements can be explained by the formation of multimeric plasmids prior to integration.  相似文献   

11.
DNA mismatches that occur between vector homology arms and chromosomal target sequences reduce gene targeting frequencies in several species; however, this has not been reported in human cells. Here we demonstrate that even a single mismatched base pair can significantly decrease human gene targeting frequencies. In addition, we show that homology arm polymorphisms can be used to direct allele-specific targeting or to improve unfavorable vector designs that introduce deletions.  相似文献   

12.
Intramolecular transposition by a synthetic IS50 (Tn5) derivative.   总被引:6,自引:3,他引:3       下载免费PDF全文
We report the formation of deletions and inversions by intramolecular transposition of Tn5-derived mobile elements. The synthetic transposons used contained the IS50 O and I end segments and the transposase gene, a contraselectable gene encoding sucrose sensitivity (sacB), antibiotic resistance genes, and a plasmid replication origin. Both deletions and inversions were associated with loss of a 300-bp segment that is designated the vector because it is outside of the transposon. Deletions were severalfold more frequent than inversions, perhaps reflecting constraints on DNA twisting or abortive transposition. Restriction and DNA sequence analyses showed that both types of rearrangements extended from one transposon end to many different sites in target DNA. In the case of inversions, transposition generated 9-bp direct repeats of target sequences.  相似文献   

13.
《Gene》1996,170(1):45-50
Repair of a double-strand break (DSB) was investigated by intermolecular recombination in Escherichia coli (Ec) recBC sbcBC cells with restriction enzyme-cleaved model plasmids. Circular plasmids were generated when a linearized plasmid (vector) containing an origin of replication was co-transformed with a DNA fragment (template) containing a homologous sequence. The influence of the position of the DSB in the vector was analyzed using templates which contain various genetic markers, non-homologous sequences and/or deletions relative to the vector. In all cases, when a DSB occurs within a marker, this marker is lost in the resulting plasmid, whereas markers flanked by homologous regions located in the vicinity of a DSB are transmitted. Insertions (deletions), substitutions and shuffling of genetic markers are possible by in vivo recombination using Ec and can be applied to plasmid constructions. It is shown that recombination can occur from both template ends or from one vector and one template end. A D-loop nuclease is suggested to participate in the resolution of the recombination intermediates  相似文献   

14.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

15.
S S Ner  T C Atkinson    M Smith 《Nucleic acids research》1989,17(11):4015-4023
We describe a method for the generation of random point deletions in any target DNA sequence using synthetic mixed oligonucleotides. A mixed pool of oligonucleotides, which contain single nucleotide deletions randomly distributed throughout the full length, was generated by a modification of the synthesis cycle of an automated DNA synthesiser that allowed the inefficient incorporation of nucleotide monomers during each cycle of synthesis. A family of oligonucleotides was used to prime in vitro synthesis of the complementary strand of a cloned DNA fragment in an M13 vector which had previously been passaged through a dut-, ung- Escherichia coli host. Strong selection for progeny from the newly synthesised strand is provided by transforming the heteroduplex into a dut+, ung+ host. This procedure introduced point deletions at 10-25% efficiency. It has been used to introduce point deletions into operator sequences which bind the yeast regulatory proteins encoded by MATa1 and MAT alpha 2.  相似文献   

16.
17.
Sequences representative of the whole genome of herpes simplex virus type 1 (HSV-1) strain KOS were cloned in the plasmid vector pBR325 in the form of EcoRI-generated DNA fragments. The cloned fragments were identified by digestion of the chimeric plasmid DNA with restriction enzymes EcoRI or EcoRI and BglII followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested HSV-1 virion DNA. The cloned fragments showed the same migration patterns as the corresponding fragments from restricted virion DNA, indicating that no major insertions or deletions were present. The presence of HSV-1 sequences in the chimeric plasmids was confirmed by hybridization of plasmid DNA to HSV-1 virion DNA. Additionally, some of the cloned fragments were shown to be biologicaly active in that they efficiently rescued three HSV-1 temperature-sensitive mutants in cotransfection marker rescue experiments.  相似文献   

18.
Summary A cosmid library has been prepared in the lorist-B vector from a mouse/human somatic cell hybrid containing region 11q23-11pter as the only human component. This chromosome region is stably maintained in the hybrid as a result of translocation onto one copy of mouse chromosome 13. Individual cosmids containing human DNA were isolated by their ability to hybridise with total human DNA, digested with either HindIII or EcoRI, and 33 individual unique sequences were identified. These fragments were then isolated and subcloned into the bluescribe plasmid vector. Regional localisation of these unique sequences was achieved using a panel of somatic cell hybrids containing different overlapping deletions of chromosome 11. The majority of the 33 mapped sequences derived from the long arm of chromosome 11. Two clones were located within the 11p13–p14 region, which is associated with a predisposition to Wilms' tumour. These probes supplement those already mapped to this chromosome and will assist in the generation of a detailed chromosome 11 linkage map.  相似文献   

19.
T-DNA integration patterns in 49 transgenic grapevines produced via Agrobacterium-mediated transformation were analyzed. Inverse PCR (iPCR) was performed to identify T-DNA/plant junctions. Sequence comparison revealed several deletions in the T-DNA right border (RB) and left border (LB), and filler DNA and duplications or deletions of grapevine DNA at the T-DNA insertion loci. In 20 T-DNA/grapevine genome junctions microsimilarities were found associated with the joining points and in all grapevine lines microsimilarities were present near the breaking points along the 30 bases of T-DNA adjacent to the two borders. Analysis of target site preferences of T-DNA insertions indicated a non-random distribution of the T-DNA, with a bias toward the intron regions of the grapevine genes. Compositional analysis of grapevine DNA around the T-DNA insertion sites revealed an inverse relationship between the CG and AT-skews and AT rich sequences present at 300–500 bp upstream the insertion points, near the RB of the T-DNA. PCR assays showed that vector backbone sequences were integrated in 28.6% of the transgenic plants analyzed and multiple T-DNAs frequently integrated at the same position in the plant genome, resulting in the formation of tandem and inverted repeats.  相似文献   

20.
Homologous recombination makes use of sequence homology to repair DNA and to rearrange genetic material. In mammals, these processes have mainly been characterized using cultured cell systems. We have developed an assay that allows us to quantitatively analyze homologous recombination in vivo in the mouse embryo. Transgenic mouse lines were generated by microinjection into a fertilized mouse ovum of a vector containing two homologous LINE-1 (L1) sequences arranged as a direct repeat: these sequences can recombine with each other and with endogenous L1 sequences before, during or after integration of the vector into the genome. Using a plasmid rescue procedure, we determined the composition of the integrated vector array in several transgenic mice and their descendants. Homologous recombination frequencies were found to be strikingly high, involving 70% of integrated vectors in some arrays, with homologous deletions being five times more frequent than gene conversion without crossing-over. Interestingly, non-homologous recombination was found to be much less frequent. We also found that endogenous L1 sequences could be involved in homologous recombination events in the mouse embryo, and that the integrated arrays could be modified from generation to generation by homologous recombination between the integrated L1 sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号