首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
D Prüfer  E Tacke  J Schmitz  B Kull  A Kaufmann    W Rohde 《The EMBO journal》1992,11(3):1111-1117
The 5.8 kb RNA genome of potato leafroll luteovirus (PLRV) contains two overlapping open reading frames, ORF2a and ORF2b, which are characterized by helicase and RNA polymerase motifs, respectively, and possibly represent the viral replicase. Within the overlap, ORF2b lacks an AUG translational start codon and is therefore presumably translated by -1 ribosomal frameshifting as a transframe protein with ORF2a. This hypothesis was studied by introducing the putative frameshift region into an internal position of the beta-glucuronidase (GUS) gene and testing for the occurrence of frameshifting in vivo by transient expression of GUS activity in potato protoplasts as well as in vitro by translation in the reticulocyte system. Both experimental approaches demonstrate that a -1 frameshift occurs at a frequency of approximately 1%. Site-directed mutagenesis identified the frameshift region and the involvement of the novel heptanucleotide motif UUUAAAU in conjunction with an adjacent stem-loop structure. Part of this stem-loop encodes a basic region in the ORF2b moiety of the transframe protein which was shown by binding experiments with PLRV RNA to represent a nucleic acid-binding domain. These data support a possible biological significance of the frameshift to occur at this position of the large overlap by including the putative RNA template-binding site of the PLRV replicase in the ORF2a/ORF2b transframe protein.  相似文献   

2.
Ribosomal pausing during translation of an RNA pseudoknot.   总被引:22,自引:3,他引:19       下载免费PDF全文
The genomic RNA of the coronavirus infectious bronchitis virus contains an efficient ribosomal frameshift signal which comprises a heptanucleotide slippery sequence followed by an RNA pseudoknot structure. The presence of the pseudoknot is essential for high-efficiency frameshifting, and it has been suggested that its function may be to slow or stall the ribosome in the vicinity of the slippery sequence. To test this possibility, we have studied translational elongation in vitro on mRNAs engineered to contain a well-defined pseudoknot-forming sequence. Insertion of the pseudoknot at a specific location within the influenza virus PB1 mRNA resulted in the production of a new translational intermediate corresponding to the size expected for ribosomal arrest at the pseudoknot. The appearance of this protein was transient, indicating that it was a true paused intermediate rather than a dead-end product, and mutational analysis confirmed that its appearance was dependent on the presence of a pseudoknot structure within the mRNA. These observations raise the possibility that a pause is required for the frameshift process. The extent of pausing at the pseudoknot was compared with that observed at a sequence designed to form a simple stem-loop structure with the same base pairs as the pseudoknot. This structure proved to be a less effective barrier to the elongating ribosome than the pseudoknot and in addition was unable to direct efficient ribosomal frameshifting, as would be expected if pausing plays an important role in frameshifting. However, the stem-loop was still able to induce significant pausing, and so this effect alone may be insufficient to account for the contribution of the pseudoknot to frameshifting.  相似文献   

3.
4.
Simian immunodeficiency virus (SIV), like its human homologues (HIV-1, HIV-2), requires a -1 translational frameshift event to properly synthesize all of the proteins required for viral replication. The frameshift mechanism is dependent upon a seven-nucleotide slippery sequence and a downstream RNA structure. In SIV, the downstream RNA structure has been proposed to be either a stem-loop or a pseudoknot. Here, we report the functional, structural and thermodynamic characterization of the SIV frameshift site RNA. Translational frameshift assays indicate that a stem-loop structure is sufficient to promote efficient frameshifting in vitro. NMR and thermodynamic studies of SIV RNA constructs of varying length further support the absence of any pseudoknot interaction and indicate the presence of a stable stem-loop structure. We determined the structure of the SIV frameshift-inducing RNA by NMR. The structure reveals a highly ordered 12 nucleotide loop containing a sheared G-A pair, cross-strand adenine stacking, two G-C base-pairs, and a novel CCC triloop turn. The loop structure and its high thermostability preclude pseudoknot formation. Sequence conservation and modeling studies suggest that HIV-2 RNA forms the same structure. We conclude that, like the main sub-groups of HIV-1, SIV and HIV-2 utilize stable stem-loop structures to function as a thermodynamic barrier to translation, thereby inducing ribosomal pausing and frameshifting.  相似文献   

5.
The genomic RNA of beet western yellows virus (BWYV) contains a potential translational frameshift signal in the overlap region of open reading frames ORF2 and ORF3. The signal, composed of a heptanucleotide slippery sequence and a downstream pseudoknot, is similar in appearance to those identified in retroviral RNAs. We have examined whether the proposed BWYV signal functions in frameshifting in three translational systems, i.c. in vitro in a reticulocyte lysate or a wheat germ extract and in vivo in E. coli. The efficiency of the signal in the eukaryotic system is low but significant, as it responds strongly to changes in either the slip sequence or the pseudoknot. In contrast, in E. coli there is hardly any response to the same changes. Replacing the slip sequence to the typical prokaryotic signal AAAAAAG yields more than 5% frameshift in E. coli. In this organism the frameshifting is highly sensitive to changes in the slip sequence but only slightly to disruption of the pseudoknot. The eukaryotic assay systems are barely sensitive to changes in either AAAAAAG or in the pseudoknot structure in this construct. We conclude that eukaryotic frameshift signals are not recognized by prokaryotes. On the other hand the typical prokaryotic slip sequence AAAAAAG does not lead to significant frameshifting in the eukaryote. In contrast to recent reports on the closely related potato leafroll virus (PLRV) we show that the frameshifting in BWYV is pseudoknot-dependent.  相似文献   

6.
Here we investigated ribosomal pausing at sites of programmed -1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding.  相似文献   

7.
The −1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for −1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5′ to the slippery site is also identified to be capable of modulating the −1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate −1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of −1 frameshift efficiency, and is thus a potential antiviral target.  相似文献   

8.
We have analyzed in cell culture the sequence elements that control the level of ribosomal frameshifting in the human T-cell leukemia virus type II (HTLV-2) gag-pro junction. The slippery sequence of HTLV-2 is sufficient to dictate a basal level of frameshifting. This level is enhanced by its upstream sequence context and by the downstream stem-loop structure which is located at an optimal distance of 7 bases. Frameshifting in human immunodeficiency virus gag-pol is similar to that of HTLV-2 gag-pro. However, experiments using hybrid cassettes of HTLV-2 and human immunodeficiency virus type 1 frameshift elements show that while the slippery sequence of HTLV-2 is less efficient, the stem-loop structure is a more efficient enhancer.  相似文献   

9.
To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter. Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.  相似文献   

10.
T H Tzeng  C L Tu    J A Bruenn 《Journal of virology》1992,66(2):999-1006
The large double-stranded RNA of the Saccharomyces cerevisiae (yeast) virus has two large overlapping open reading frames on the plus strand, one of which is translated via a -1 ribosomal frameshift. Sequences including the overlapping region, placed in novel contexts, can direct ribosomes to make a -1 frameshift in wheat germ extract, Escherichia coli and S. cerevisiae. This sequence includes a consensus slippery sequence, GGGUUUA, and has the potential to form a pseudoknot 3' to the putative frameshift site. Based on deletion analysis, a region of 71 nucleotides including the potential pseudoknot and the putative slippery sequence is sufficient for frameshifting. Site-directed mutagenesis demonstrates that the pseudoknot is essential for frameshifting.  相似文献   

11.
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U(6)A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U(6)A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.  相似文献   

12.
13.
I Brierley  P Digard  S C Inglis 《Cell》1989,57(4):537-547
The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshifting signal at the junction of two overlapping open reading frames. We have defined by deletion analysis an 86 nucleotide sequence encompassing the overlap region which is sufficient to allow frameshifting in a heterologous context. The upstream boundary of the signal consists of the sequence UUUAAAC, which is the likely site of ribosomal slippage. We show by creation of complementary nucleotide changes that the RNA downstream of this "slippery" sequence folds into a tertiary structure termed a pseudoknot, the formation of which is essential for efficient frameshifting.  相似文献   

14.
15.
The ribosomal frameshift signal in the genomic RNA of the coronavirus IBV is composed of two elements, a heptanucleotide "slippery-sequence" and a downstream RNA pseudoknot. We have investigated the kinds of slippery sequence that can function at the IBV frameshift site by analysing the frameshifting properties of a series of slippery-sequence mutants. We firstly confirmed that the site of frameshifting in IBV was at the heptanucleotide stretch UUUAAAC, and then used our knowledge of the pseudoknot structure and a suitable reporter gene to prepare an expression construct that allowed both the magnitude and direction of ribosomal frameshifting to be determined for candidate slippery sequences. Our results show that in almost all of the sequences tested, frameshifting is strictly into the -1 reading frame. Monotonous runs of nucleotides, however, gave detectable levels of a -2/+1 frameshift product, and U stretches in particular gave significant levels (2% to 21%). Preliminary evidence suggests that the RNA pseudoknot may play a role in influencing frameshift direction. The spectrum of slip-sequences tested in this analysis included all those known or suspected to be utilized in vivo. Our results indicate that triplets of A, C, G and U are functional when decoded in the ribosomal P-site following slippage (XXXYYYN) although C triplets were the least effective. In the A-site (XXYYYYN), triplets of C and G were non-functional. The identity of the nucleotide at position 7 of the slippery sequence (XXXYYYN) was found to be a critical determinant of frameshift efficiency and we show that a hierarchy of frameshifting exists for A-site codons. These observations lead us to suggest that ribosomal frameshifting at a particular site is determined, at least in part, by the strength of the interaction of normal cellular tRNAs with the A-site codon and does not necessarily involve specialized "shifty" tRNAs.  相似文献   

16.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

17.
?1 programmed ribosomal frameshifting (PRF) in viruses is often stimulated by a pseudoknot downstream from the slippery sequence. At the PRF junction of HIV-1, transmissible gastroenteritis virus (TGEV), Barmah Forest virus (BFV), Fort Morgan virus (FMV), and Equine arteritis virus (EAV), we identified potential double pseudoknots in either a tandem mode or embedded mode. In viruses with tandem pseudoknots (5′PK & 3′PK), the slippery sequence is encompassed in the 5′PK. The ribosome needs to unwind the 5′PK to get to the slippery sequence. In HIV-1, the 3′PK and several alternative structures are mutually exclusive. Disruption of the tandem pseudoknots may enable one of the alternative structures to form as the effective frameshift stimulator. In TGEV/BFV/FMV, the 3′PK is a conventional frameshift stimulator. In all cases, the tandem pseudoknots may slow down the ribosome before it reaches the conventional PRF signals. In EAV, a compact pseudoknot is embedded within loop2 of the otherwise conventional frameshift-stimulating pseudoknot. All double pseudoknots have the potential to stack their stems coaxially. We built structural models of the HIV-1 and EAV double pseudoknots to show that both the tandem and embedded modes are feasible and reasonable. We hypothesize that the fundamental reason for the viruses to utilize coaxially stacked double pseudoknots is to increase the overall stability of the frameshift regulating structure, and avoid an ultra-stable single pseudoknot which may become a ribosomal roadblock. Our results significantly expand the repertoire of RNA structures and dynamics that may potentially involve in ?1 PRF regulation.  相似文献   

18.
The frameshift signal of the avian coronavirus infectious bronchitis virus (IBV) contains two cis-acting signals essential for efficient frameshifting, a heptameric slippery sequence (UUUAAAC) and an RNA pseudoknot structure located downstream. The frameshift takes place at the slippery sequence with the two ribosome-bound tRNAs slipping back simultaneously by one nucleotide from the zero phase (U UUA AAC) to the -1 phase (UUU AAA). Asparaginyl-tRNA, which decodes the A-site codon AAC, has the modified base Q at the wobble position of the anticodon (5' QUU 3') and it has been speculated that Q may be required for frameshifting. To test this, we measured frameshifting in cos cells that had been passaged in growth medium containing calf serum or horse serum. Growth in horse serum, which contains no free queuine, eliminates Q from the cellular tRNA population upon repeated passage. Over ten cell passages, however, we found no significant difference in frameshift efficiency between the cell types, arguing against a role for Q in frameshifting. We confirmed that the cells cultured in horse serum were devoid of Q by purifying tRNAs and assessing their Q-content by tRNA transglycosylase assays and coupled HPLC-mass spectroscopy. Supplementation of the growth medium of cells grown either on horse serum or calf serum with free queuine had no effect on frameshifting either. These findings were recapitulated in an in vitro system using rabbit reticulocyte lysates that had been largely depleted of endogenous tRNAs and resupplemented with Q-free or Q-containing tRNA populations. Thus Q-base is not required for frameshifting at the IBV signal and some other explanation is required to account for the slipperiness of eukaryotic asparaginyl-tRNA.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshift to produce Gag-Pol, the precursor of its enzymatic activities. This frameshift occurs at a slippery sequence on the viral messenger RNA and is stimulated by a specific structure, downstream of the shift site. While in group M, the most abundant HIV-1 group, the frameshift stimulatory signal is an extended bulged stem-loop, we show here, using a combination of mutagenesis and probing studies, that it is a pseudoknot in group O. The mutagenesis and probing studies coupled to an in silico analysis show that group O pseudoknot is a hairpin-type pseudoknot with two coaxially stacked stems of eight base-pairs (stem 1 and stem 2), connected by single-stranded loops of 2nt (loop 1) and 20nt (loop 2). Mutations impairing formation of stem 1 or stem 2 of the pseudoknot reduce frameshift efficiency, whereas compensatory changes that allow re-formation of these stems restore the frameshift efficiency to near wild-type level. The difference between the frameshift stimulatory signal of group O and group M supports the hypothesis that these groups originate from a different monkey to human transmission.  相似文献   

20.
马铃薯卷叶病毒 (PLRV)是正链RNA病毒 ,属黄化病毒组[1 ] 严格虫传 ,分布广泛 ,难以控制 ,侵染马铃薯 ,给生产造成巨大损失。PLRV基因全长 6 0kb ,有 6个读码框架 ,其中ORF2a是第二读框 ,全长 192 0bp ,编码一个 70kD的多肽。另外 ,ORF2a在与ORF2b重叠处可发生移码继续转译 ,直到ORF2b的尾 ,转译产物为一条 118kD的多肽 ,该蛋白的C端与复制酶的序列具很大的同源性[2~ 4] 。Prufer[5] 等和Kujawa[6] 等分别研究了PLRV基因组上ORF2a与ORF2b重叠区附近与移码有关的滑动序列及其…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号