首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.  相似文献   

2.
The environmental conditions in laminated microbial sediment ecosystems on the island of Schiermonnikoog (The Netherlands) were monitoredin situ over 24-hour periods by using micro-electrodes. In the layer of purple sulfur bacteria dramatic diel aerobic/anaerobic shifts occurred, whereas the top layer of cyanobacteria was occasionally confronted with sulfide. Pure cultures of the dominant organisms, being the cyanobacteriumMicrocoleus chthonoplastes and the purple sulfur bacteriumThiocapsa roseopersicina, were subjected to regimes mimicking the natural circumstances. It was demonstrated that both organisms are physiologically very well adapted to the fluctuating environmental conditions. The organisms interact by releasing metabolic end-products, the removal of toxic compounds and by competition for common substrates. It was demonstrated that positive interactions between both organisms are more important than negative interactions.  相似文献   

3.
4.
The effects of various concentrations of sulfate, organic sulfur, and organic carbon on sulfate uptake by aerobic bacteria were studied using pure cultures growing in a defined medium. Cultures of Pseudomonas fluorescens and Corynebacterium striatum took up sulfate faster when young, but sulfate uptake by Serratia marcescens was faster in older cultures. Organic sulfur was found to decrease sulfate uptake, but at concentrations somewhat higher than occurs in most natural freshwater ecosystems. Low levels of sulfate can theoretically directly limit bacterial biomass production but such limitation probably does not occur in natural systems. Evidence is presented which indirectly links the uptake of sulfate and organic carbon, adding credibility to the proposal that sulfate uptake can be used as an indicator of microbial biomass production in freshwater ecosystems.  相似文献   

5.
Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N2 production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.  相似文献   

6.
Methanotrophs play a key role in the global carbon cycle, in which they affect methane emissions and help to sustain diverse microbial communities through the conversion of methane to organic compounds. To investigate the microbial interactions that cause positive effects on methanotrophs, cocultures were constructed using Methylovulum miyakonense HT12 and each of nine nonmethanotrophic bacteria, which were isolated from a methane-utilizing microbial consortium culture established from forest soil. Three rhizobial strains were found to strongly stimulate the growth and methane oxidation of M. miyakonense HT12 in cocultures. We purified the stimulating factor produced by Rhizobium sp. Rb122 and identified it as cobalamin. Growth stimulation by cobalamin was also observed for three other gammaproteobacterial methanotrophs. These results suggest that microbial interactions through cobalamin play an important role in methane oxidation in various ecosystems.  相似文献   

7.
Dissolved oxygen concentration plays a major role in shaping biotic interactions and nutrient flows within marine ecosystems. Throughout the global ocean, regions of low dissolved oxygen concentration (hypoxia) are a common and expanding feature of the water column, with major feedback on productivity and greenhouse gas cycling. To better understand microbial diversity underlying biogeochemical transformations within oxygen-deficient oceanic waters, we monitored and quantified bacterial and archaeal community dynamics in relation to dissolved gases and nutrients during a seasonal stratification and deep water renewal cycle in Saanich Inlet, British Columbia, a seasonally anoxic fjord. A number of microbial groups partitioned within oxygen-deficient waters including Nitrospina and SAR324 affiliated with the δ- proteobacteria , SAR406 and γ- proteobacteria related to thiotrophic gill symbionts of deep-sea clams and mussels. Microbial diversity was highest within the hypoxic transition zone decreasing dramatically within anoxic basin waters and temporal patterns of niche partitioning were observed along defined gradients of oxygen and phosphate. These results provide a robust comparative phylogenetic framework for inferring systems metabolism of nitrogen, carbon and sulfur cycling within oxygen-deficient oceanic waters and establish Saanich Inlet as a tractable model for studying the response of microbial communities to changing levels of water column hypoxia.  相似文献   

8.
Abstract: A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur cycle and includes growth metabolism and their kinetic parameters as described from laboratory experimentation. Hence, the metabolic production and consumption processes are coupled to population growth. The model is used to calculate benthic oxygen, sulfide and light profiles and to infer spatial relationships and interactions among the different populations. Furthermore, the model is used to explore the effect of different abiotic and biotic environmental parameters on the community structure. A strikingly clear pattern emerged of the interaction between purple and colorless sulfur bacteria: either colorless sulfur bacteria dominate or a coexistence is found of colorless and purple sulfur bacteria. The model predicts that purple sulfur bacteria only proliferate when the studied environmental parameters surpass well-defined threshold levels. However, once the appropriate conditions do occur, the purple sulfur bacteria are extremely successful as their biomass outweighs that of colorless sulfur bacteria by a factor of up to 17. The typical stratification pattern predicted closely resembles the often described bilayer communities which comprise a layer of purple sulfur bacteria below a cyanobacterial top-layer; colorless sulfur bacteria are predicted to sandwich in between both layers. The profiles of oxygen and sulfide shift on a diel basis similarly as observed in real systems.  相似文献   

9.
In freshwater systems, contributions of chemosynthetic products by sulfur-oxidizing bacteria in sediments as nutritional resources in benthic food webs remain unclear, even though chemosynthetic products might be an important nutritional resource for benthic food webs in deep-sea hydrothermal vents and shallow marine systems. To study geochemical aspects of this trophic pathway, we sampled sediment cores and benthic animals at two sites (90 and 50 m water depths) in the largest freshwater (mesotrophic) lake in Japan: Lake Biwa. Stable carbon, nitrogen, and sulfur isotopes of the sediments and animals were measured to elucidate the sulfur nutritional resources for the benthic food web precisely by calculating the contributions of the incorporation of sulfide-derived sulfur to the biomass and of the biogeochemical sulfur cycle supporting the sulfur nutritional resource. The recovered sediment cores showed increases in 34S-depleted sulfide at 5 cm sediment depth and showed low sulfide concentration with high δ34S in deeper layers, suggesting an association of microbial activities with sulfate reduction and sulfide oxidation in the sediments. The sulfur-oxidizing bacteria may contribute to benthic animal biomass. Calculations based on the biomass, sulfur content, and contribution to sulfide-derived sulfur of each animal comprising the benthic food web revealed that 58%–67% of the total biomass sulfur in the benthic food web of Lake Biwa is occupied by sulfide-derived sulfur. Such a large contribution implies that the chemosynthetic products of sulfur-oxidizing bacteria are important nutritional resources supporting benthic food webs in the lake ecosystems, at least in terms of sulfur. The results present a new trophic pathway for sulfur that has been overlooked in lake ecosystems with low-sulfate concentrations.  相似文献   

10.
An integrative study of a meromictic lake ecosystem in Antarctica   总被引:1,自引:0,他引:1  
In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.  相似文献   

11.
Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Sulfate-reducing bacteria (SRB) play a key role in sulfur and nutrient recycling in these ecosystems. In this work, specific primers for 16S rRNA encoding gene, previously described, were used to study the diversity of SRB in microbial mats of the Ebro Delta. We confirm that this method is reliable to identify the diversity of SRB in these ecosystems. However, some mismatches in obtained sequences had been observed in our system and must be taken under consideration. Various genera of SRB in Ebro Delta microbial mats were identified, such as Desulfonema, Desulfatitalea, Desulfosalsimonas, Desulfoccocus, and Desulfovibrio. The diversity observed in our samples is very similar to previously reported in other microbial mats communities.  相似文献   

12.
Nitrate amendment is normally an effective method for sulfide control in oil field-produced waters. However, this approach has occasionally failed to prevent sulfide accumulation, despite the presence of active nitrate-reducing bacterial populations. Here, we report our study of bulk chemical transformations in microcosms of oil field waters containing nitrate-reducing, sulfide-oxidizing bacteria, but lacking denitrifying heterotrophs. Amendment with combinations of nitrate, acetate, and phosphate altered the microbial sulfur and nitrogen transformations. Elemental sulfur produced by chemotrophic nitrate-reducing bacteria was re-reduced heterotrophically to sulfide. Ammonification, rather than denitrification, was the predominant pathway for nitrate reduction. The application of nitrite led to transient sulfide depletion, possibly due to higher rates of nitrite reduction. The addition of molybdate suppressed both the accumulation of sulfide and the heterotrophic reduction of nitrate. Therefore, sulfidogenesis was likely due to elemental sulfur-reducing heterotrophic bacteria, and the nitrate-reducing microbial community consisted mainly of facultatively chemotrophic microbes. This study describes one set of conditions for continued sulfidogenesis during nitrate reduction, with important implications for nitrate control of sulfide production in oil fields.  相似文献   

13.
湖泊微生物反硝化过程及速率研究进展   总被引:2,自引:0,他引:2  
孙小溪  蒋宏忱 《微生物学报》2020,60(6):1162-1176
湖泊中微生物介导的反硝化过程对于区域乃至全球的气候环境变化有着深远的影响。因此,研究湖泊微生物反硝化过程及速率有助于我们深刻理解湖泊氮元素生物地球化学循环规律,全面认识湖泊生境对全球氮循环的贡献。本文综述了湖泊生境中反硝化过程(包括典型的反硝化过程及与其他物质循环耦合的反硝化过程,如与有机氮耦合的共反硝化作用、与碳循环耦合的硝酸盐/亚硝酸盐依赖型厌氧甲烷氧化、与铁循环耦合的硝酸盐依赖型铁氧化、与硫循环耦合的硝酸盐还原硫氧化)的速率、驱动微生物及其影响因素。最后对湖泊反硝化过程研究现状和未来发展方向提出总结与展望。  相似文献   

14.
15.
The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.  相似文献   

16.
17.
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor.  相似文献   

18.
Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood in aquaculture ponds, which received mounting of organic matter. In this study, bacterial communities, SRB and SOB from sediments of aquaculture ponds with different sizes of grass carp (Ctenopharyngodon idellus) were analysed using high-throughput sequencing and quantitative real-time PCR (qPCR). The results indicated that microbial communities in aquaculture pond sediments of large juvenile fish showed the highest richness and abundance of SRB and SOB, potentially further enhancing microbial sulfur cycling. Specifically, SRB were dominated by Desulfobulbus and Desulfovibrio, whereas SOB were dominated by Dechloromonas and Leptothrix. Although large juvenile fish ponds had relatively lower concentrations of sulfur compounds (i.e. total sulfur, acid-volatile sulfide and elemental sulfur) than those of larval fish ponds, more abundant SRB and SOB were found in the large juvenile fish ponds. Further redundancy analysis (RDA) and linear regression indicated that sulfur compounds and sediment suspension are the major environmental factors shaping the abundance and community structure of SRB and SOB in aquaculture pond sediments. Findings of this study expand our current understanding of microbial driving sulfur cycling in aquaculture ecosystems and also provide novel insights for ecological and green aquaculture managements.  相似文献   

19.
Nitrifying bacteria play a key role in the global nitrogen cycle due to their ability to convert reduced nitrogen compounds (ammonium) to oxidized ones (nitrite and nitrate). Recent investigations based on the methods of molecular ecology revealed that bacteria are responsible for nitrification in natural ecosystems. At the same time, data on the species composition of the nitrifiers in soil microbial communities are scarce. Soil samples collected in the forest and steppe areas of European Russia and the enrichment cultures of nitrifying bacteria isolated from these samples were used for molecular studies of the diversity of the amoA gene encoding the synthesis of the key enzyme of autotrophic ammonium oxidation. The nitrifying bacteria of the genera Nitrosospira and Nitrosovibrio were found in all the studied soils from natural biocenoses and agrocenoses.  相似文献   

20.
Phage-host interactions in soil   总被引:3,自引:0,他引:3  
Abstract Phages are abundant and ubiquitous in nature, and are therefore important components of microbial communities. They can impact on host populations in several ways, including predation and alteration of host phenotype by genetic interactions. The dynamic survival of phage populations in soil requires infective interactions with host populations which must be undergoing growth. Hence survival is limited by the activity of soil bacteria, and phage populations must adopt strategies to overcome periods of inactivity. One of the most effective strategies is the lysogenic cycle of temperate phages. It is argued here that lysogeny in soil has a distinct advantage over virulence for phage and host survival, as opposed to aquatic ecosystems where virulence seems a more successful strategy for phage populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号