首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human cytomegalovirus genome sequences in lymph nodes   总被引:1,自引:0,他引:1  
Human cytomegalovirus (CMV) is a major cause of morbidity in heart and lung transplant patients, resulting from immunosuppression-mediated reactivation of latent CMV originating either from the transplanted tissue, or the recipient. We showed that out of eight donor/recipient pairs, the lymph nodes (LNs) of three donors and four recipients, all CMV seropositive, harboured CMV DNA at exceeding levels compared with those of matched blood samples, as well as CMV RNA otherwise undetectable in patients' blood. On follow-up, patients positive for CMV DNA and RNA in LNs developed viraemia 4 to 5 weeks earlier than those initially polymerase chain reaction-negative for CMV. Our results indicate that LN are a significant site for sequestration and persistence of CMV and that LN may be important in seeding of CMV-infected cells into the circulation.  相似文献   

2.
Herpesvirus sylvilagus is a lymphotropic (type gamma) herpesvirus of cottontail rabbits (Sylvilagus floridanus). Analysis of virion DNA of herpesvirus sylvilagus has revealed that the genome consists of one stretch of about 120 kilobase pairs of internal, unique DNA flanked by a variable number of 553-base-pair tandem repeats. The G + C content of the repetitive DNA is extremely high (83%), as determined by sequencing. The organization of the herpesvirus sylvilagus genome is, therefore, similar to that of the primate lymphotropic viruses herpesvirus saimiri and herpesvirus ateles.  相似文献   

3.
4.
Verma SC  Robertson ES 《Journal of virology》2003,77(23):12494-12506
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), a human oncogenic gamma-2-herpesvirus, transforms human endothelial cells and establishes latent infection at a low efficiency in vitro. During latent infection, only a limited number of genes are expressed, and the circularized viral genome is maintained as a multicopy episome. Latency-associated nuclear antigen (LANA), exclusively expressed during latency, has been shown to have a multifunctional role in KS pathogenesis. LANA tethers the viral episome to the host chromosome, thus ensuring efficient persistence of the viral genome during successive rounds of cell division. Besides episome maintenance, LANA modulates the expression of genes of various cellular and viral pathways, including those of retinoblastoma protein and p53. Herpesvirus saimiri (HVS), another gamma-2-herpesvirus, primarily infects New World primates. Orf73, encoding the nuclear antigen of HVS, is the positional homolog of the LANA gene, and the ORF73 protein has some sequence homology to KSHV LANA. However, the function of ORF73 of HVS has not been thoroughly investigated. In this report, we show that HVS ORF73 may be important for episome persistence and colocalizes with the HVS genomic DNA on metaphase chromosomes. Furthermore, HVS terminal repeats (TRs) contain a cis-acting sequence similar to that in KSHV TRs, suggesting that the LANA binding sequence is conserved between these two viruses. This cis-acting element is sufficient to bind HVS ORF73 from strains C488 and A11, and plasmids containing the HVS C488 TR element are maintained and replicate in HVS C488 ORF73-expressing cells.  相似文献   

5.
Contour-length measurements of both nondenatured and partially denatured DNA from purified extracellular human cytomegalovirus indicate that more than one size class of viral DNA is encapsidated. In addition to a size class averaging about 100 x 10(6) daltons, a much less abundant class of larger viral DNA molecules, 150 x 10(6) to 155 x 10(6) daltons, was extracted from purified extracellular virus. As predicted by melting-curve analysis, partial denaturation of human cytomegalovirus DNA generates denaturation maps showing distinctive adenine plus thymidine (A+T)-rich and guanine plus cytosine (G+C)-rich localizations. Alignment of partial denaturation maps of both 100 x 10(6)- and 150 x 10(6)- to 155 x 10(6)-dalton molecules from maximum overlap of common A+T- and G+C-rich zones clearly shows six unique zones contained in a length equal to the longest class, 150 x 10(6) to 155 x 10(6) daltons. However, various alignments of the smaller class of the molecules within the confines of the approximately 100 x 10(6)-dalton-length equivalent are nondistinctive. Of the six unique A+T- and G+C-rich zones, five are linked in a specific sequence and maintain the same relative orientation; these features indicate the absence of major inversions within these zones. The sixth unique zone may occur at either end of this five-zone series, but it was never found at both ends of the same molecule. Additionally, this terminal zone appears to undergo complete inversions at least at one end of the alignment, and perhaps at both. These data indicate that 150 x 10(6)- to 155 x 10(6)-dalton molecules comprise human cytomegalovirus-specific genetic information.  相似文献   

6.
Pituitary thyrotroph cells specialize in the synthesis of TSH, and thus represent a model to study cell-specific gene expression. We have used the murine TSH beta (mTSH beta) gene promoter and TSH-producing and nonproducing transplantable tumors derived from murine thyrotroph cells, referred to as TtT-97 and MGH 101A, respectively, to identify nuclear factors which selectively interact with the mTSH beta gene. DNase I protection analyses demonstrate that factors present in TtT-97 nuclear extracts bind with high affinity to five separate sites in the TSH beta promoter region, denoted as distal D1 (-253 to -227) and proximal, P1 (-76 to -68), P2 (-106 to -98), P3 (-126 to -112), and P4 (-142 to -131) footprints. By contrast, non-TSH beta expressing thyrotroph cell nuclear extracts and L-cell nonpituitary cell extracts did not appear to footprint the D1 site; whereas the nonpituitary nuclear extracts revealed minimal DNase I protection in the P1-P4 regions. These data show that the distal D1 site is thyrotroph specific and contains a 6 base pair direct repeat sequence (5'-AGATAT-3'). Factor occupancy of the D1 site is protein dependent, occurs rapidly (less than 15 sec), is destabilized by 170 mM KCl, and results in an associated DNase I hypersensitive region. A double-stranded oligonucleotide spanning the D1 footprint competes only the distal factor binding region. Transfection of plasmid constructs containing progressive 5'-deletions of the mTSH beta promoter linked to the reporter gene luciferase into primary TtT-97 cells demonstrate a marked decrease in activity between the regions -270 and -79, which contains the D1 region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The genome of murine cytomegalovirus, extracted from extracellular virions, is a linear double-stranded DNA molecule ca. 240 kilobase pairs long. In our initial cloning of subgenomic fragments of the murine cytomegalovirus genome, we obtained a HindIII clone which contained fused HindIII-terminal fragments. By hybridizing this cloned DNA fragment to infected-cell DNA, we identified an intracellular restriction fragment which was the length of the sum of the two authentic termini. This fusion fragment was not present in virion DNA but could be detected as early as 2 h postinfection and reached its highest level shortly after the onset of DNA replication at 16 h postinfection. The prereplicative increase of fused ends was not inhibited by a level of phosphonoacetic acid which effectively shut off viral DNA synthesis, nor was the early conversion from free to fused ends prevented by inhibitors of protein or RNA synthesis. The results are consistent with the fused state of viral DNA being a replicative intermediate and precursor to DNA synthesis.  相似文献   

8.
Human cytomegalovirus (HCMV) cloned EcoRI fragments R and b hybridized strongly, under standard high-stringency conditions, to uninfected cellular DNA of human, murine, or sea urchin origin. Less hybridization was detected with fragments, A, C, E, WL(F), WN(H), I, M, O, P, Q, V, c, d, and e. Southern blot analysis of the HCMV-related human DNA localized the major sites of hybridization of HCMV EcoRI fragments R, b, and d to defined regions of the 28S rRNA gene.  相似文献   

9.
The design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event. In the case of adenovirus, sequences between nucleotides 200 and 400 at the left end of the genome are essential for packaging. This region contains a series of redundant bipartite sequences, termed A repeats, that function in packaging. Synthetic packaging sequences made of multimers of a single A repeat substitute for the authentic adenovirus packaging domain. A repeats are binding sites for the CCAAT displacement protein and the viral protein IVa2. Several lines of evidence implicate these proteins in the packaging process. It was not known, however, whether other cis-acting elements play a role in the packaging process as well. We utilized an in vivo approach to address the role of the inverted terminal repeats and the covalently linked terminal proteins in packaging of the adenovirus genome. Our results show that these elements are not necessary for efficient packaging of the viral genome. A significant implication of these results applicable to gene therapy vector design is that the linkage of the adenovirus packaging domain to heterologous DNA sequences should suffice for targeting to the viral capsid.  相似文献   

10.
11.
  1. Download : Download high-res image (76KB)
  2. Download : Download full-size image
  相似文献   

12.
Liu D  Mack A  Wang R  Galli M  Belk J  Ketpura NI  Crawford NM 《Genetics》2001,157(2):817-830
The Arabidopsis transposon Tag1 has an unusual subterminal structure containing four sets of dissimilar repeats: one set near the 5' end and three near the 3' end. To determine sequence requirements for efficient and regulated transposition, deletion derivatives of Tag1 were tested in Arabidopsis plants. These tests showed that a 98-bp 5' fragment containing the 22-bp inverted repeat and four copies of the AAACCX (X = C, A, G) 5' subterminal repeat is sufficient for transposition while a 52-bp 5' fragment containing only one copy of the subterminal repeat is not. At the 3' end, a 109-bp fragment containing four copies of the most 3' repeat TGACCC, but not a 55-bp fragment, which has no copies of the subterminal repeats, is sufficient for transposition. The 5' and 3' end fragments are not functionally interchangeable and require an internal spacer DNA of minimal length between 238 and 325 bp to be active. Elements with these minimal requirements show transposition rates and developmental control of excision that are comparable to the autonomous Tag1 element. Last, a DNA-binding activity that interacts with the 3' 109-bp fragment but not the 5' 98-bp fragment of Tag1 was found in nuclear extracts of Arabidopsis plants devoid of Tag1.  相似文献   

13.
14.
The 3' cis-acting element for mouse hepatitis virus (MHV) RNA synthesis resides entirely within the 301-nucleotide 3' untranslated region (3' UTR) of the viral genome and consists of three regions. Encompassing the upstream end of the 3' UTR are a bulged stem-loop and an overlapping RNA pseudoknot, both of which are essential to MHV and common to all group 2 coronaviruses. At the downstream end of the genome is the minimal signal for initiation of negative-strand RNA synthesis. Between these two ends is a hypervariable region (HVR) that is only poorly conserved between MHV and other group 2 coronaviruses. Paradoxically, buried within the HVR is an octanucleotide motif (oct), 5'-GGAAGAGC-3', which is almost universally conserved in coronaviruses and is therefore assumed to have a critical biological function. We conducted an extensive mutational analysis of the HVR. Surprisingly, this region tolerated numerous deletions, rearrangements, and point mutations. Most striking, a mutant deleted of the entire HVR was only minimally impaired in tissue culture relative to the wild type. By contrast, the HVR deletion mutant was highly attenuated in mice, causing no signs of clinical disease and minimal weight loss compared to wild-type virus. Correspondingly, replication of the HVR deletion mutant in the brains of mice was greatly reduced compared to that of the wild type. Our results show that neither the HVR nor oct is essential for the basic mechanism of MHV RNA synthesis in tissue culture. However, the HVR appears to play a significant role in viral pathogenesis.  相似文献   

15.
This study identifies a region of the adeno-associated virus type 2 (AAV-2) rep gene (nucleotides 190 to 540 of wild-type AAV-2) as a cis-acting Rep-dependent element able to promote the replication of transiently transfected plasmids. This viral element is also shown to be involved in the amplification of integrated sequences in the presence of adenovirus and Rep proteins.  相似文献   

16.
The production of wild-type-free stocks of recombinant parvovirus minute virus of mice [MVM(p)] is difficult due to the presence of homologous sequences in vector and helper genomes that cannot easily be eliminated from the overlapping coding sequences. We have therefore cloned and sequenced spontaneously occurring defective particles of MVM(p) with very small genomes to identify the minimal cis-acting sequences required for DNA amplification and virus production. One of them has lost all capsid-coding sequences but is still able to replicate in permissive cells when nonstructural proteins are provided in trans by a helper plasmid. Vectors derived from this particle produce stocks with no detectable wild-type MVM after cotransfection with new, matched, helper plasmids that present no homology downstream from the transgene.  相似文献   

17.
Here we present the first complete genomic sequence of Marek's disease virus serotype 3 (MDV3), also known as turkey herpesvirus (HVT). The 159,160-bp genome encodes an estimated 99 putative proteins and resembles alphaherpesviruses in genomic organization and gene content. HVT is very similar to MDV1 and MDV2 within the unique long (UL) and unique short (US) genomic regions, where homologous genes share a high degree of colinearity and their proteins share a high level of amino acid identity. Within the UL region, HVT contains 57 genes with homologues found in herpes simplex virus type 1 (HSV-1), six genes with homologues found only in MDV, and two genes (HVT068 and HVT070 genes) which are unique to HVT. The HVT US region is 2.2 kb shorter than that of MDV1 (Md5 strain) due to the absence of an MDV093 (SORF4) homologue and to differences at the UL/short repeat (RS) boundary. HVT lacks a homologue of MDV087, a protein encoded at the UL/RS boundary of MDV1 (Md5), and it contains two homologues of MDV096 (glycoprotein E) in the RS. HVT RS are 1,039 bp longer than those in MDV1, and with the exception of an ICP4 gene homologue, the gene content is different from that of MDV1. Six unique genes, including a homologue of the antiapoptotic gene Bcl-2, are found in the RS. This is the first reported Bcl-2 homologue in an alphaherpesvirus. HVT long repeats (RL) are 7,407 bp shorter than those in MDV1 and do not contain homologues of MDV1 genes with functions involving virulence, oncogenicity, and immune evasion. HVT lacks homologues of MDV1 oncoprotein MEQ, CxC chemokine, oncogenicity-associated phosphoprotein pp24, and conserved domains of phosphoprotein pp38. These significant genomic differences in and adjacent to RS and RL regions likely account for the differences in host range, virulence, and oncogenicity between nonpathogenic HVT and highly pathogenic MDV1.  相似文献   

18.
Friend murine leukemia virus (F-MuLV) is a replication-competent, ecotropic, NB-tropic retrovirus which produces a rapidly fatal erythroleukemia in susceptible strains of mice. We previously molecularly cloned the entire F-MuLV genome. Transfection of this cloned DNA into NIH 3T3 mouse fibroblasts produces a virus with the same leukemia-inducing characteristics as F-MuLV. To identify which portion of the F-MuLV genome is responsible for causing leukemia, we made recombinant viruses between subgenomic fragments of F-MuLV DNA and another retrovirus--Amphotroph clone 4070. Amphotroph clone 4070 is a replication-competent, amphotrophic, N-tropic virus which does not produce any detectable malignancy in mice. A 2.4-kilobase-pair fragment of F-MuLV DNA was isolated. This DNA fragment encompassed approximately 700 base pairs from the 3' end of the F-MuLV pol gene and 1.7 kilobase pairs of the env gene including all of gp70 and the N-terminal four-fifths of p15E. A molecularly cloned fragment of Amphotroph DNA was ligated to the 2.4-kilobase-pair F-MuLV DNA, and an 8.3-kilobase-pair hybrid F-MuLV-Amphotroph DNA was subcloned into a new plasmid (p5a25-H). Transfection of p5a25-H DNA into fibroblasts resulted in the production of a replication-competent, ecotropic, N-tropic retrovirus--5a25-H virus. Inoculation of this virus into newborn NIH Swiss mice caused leukemia within 4 to 6 months. The disease caused by 5a25-H was pathologically and histologically indistinguishable from the disease caused by F-MuLV. We conclude that the F-MuLV sequences needed to cause disease are contained in these 2.4 kilobase pairs of DNA.  相似文献   

19.
As a key focus of synthetic biology, building a minimal artificial cell has given rise to many discussions. A synthetic minimal cell will provide an appropriate chassis to integrate functional synthetic parts, devices and systems with functions that cannot generally be found in nature. The design and construction of a functional minimal genome is a key step while building such a cell/chassis since all the cell functions can be traced back to the genome. Kinds of approaches, based on bioinformatics and molecular biology, have been developed and proceeded to derive essential genes and minimal gene sets for the synthetic minimal genome. Experiments about streamlining genomes of model bacteria revealed genome reduction led to unanticipated beneficial properties, such as high electroporation efficiency and accurate propagation of recombinant genes and plasmids that were unstable in other strains. Recent achievements in chemical synthesis technology for large DNA segments together with the rapid development of the whole-genome sequencing, have transferred synthesis of genes to assembly of the whole genomes based on oligonucleotides, and thus created strong preconditions for synthesis of artificial minimal genome. Here in this article, we review briefly the history and current state of research in this field and summarize the main methods for making a minimal genome. We also discuss the impacts of minimized genome on metabolism and regulation of artificial cell.  相似文献   

20.
The beta-subunit of the mitochondrial F1-ATPase is synthesized as a precursor in the cytoplasm which is delivered through two bilayers bounding the mitochondria prior to its assembly with other proteins into a functional complex. In order to determine the role of the amino-terminal 50 residues of the precursor on its localization, maturation, and assembly, a set of deletions within this region of the ATP2 gene encoding the beta-subunit has been analyzed. These studies reveal that deletions between residue 10 of the F1 beta-presequence and residue 36 can still direct in vivo mitochondrial import and assembly of the mutant subunit into a functional complex. Deletions within ATP2 which contain less than the first 10 residues of the precursor are not imported. Thus, the extreme amino terminus (about half of the transient presequence) of the F1 beta-subunit can direct its mitochondrial import. The wild-type F1 beta-subunit precursor is matured by the matrix-located metalloprotease at Lys19-Gln20; however, small in-frame deletions up to 17 residues distal to this site fail to be matured either in vitro or in vivo. This nonmatured F1 beta-subunit is also assembled into a functional enzyme and supports growth of its host on a nonfermentable carbon source. These data indicate that maturation of the F1 beta-subunit precursor is dependent on a protein sequence located distal to the proteolytic maturation site which is distinct from the mitochondrial targeting sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号