首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng Y  Zhang W  Ning J  Kong F 《Carbohydrate research》2002,337(24):2383-2391
Two isomeric pentasaccharides, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp (I) and beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp (II), the possible repeating unit of the beta-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht, were synthesized as their 4-methoxyphenyl glycosides in a regio- and stereoselective manner. The pentasaccharide I was obtained from 3-O-selective glycosylation of 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (12) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (6) followed by acetylation, debenzylidenation, and 6-O-selective glucosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl trichloroacetimidate (1), and then by deprotection. The pentasaccharide II was obtained from 3-O-selective coupling of 12 with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)-2,4-di-O-acetyl-3-O-allyl-alpha-D-glucopyranosyl trichloroacetimidate (10) followed by acetylation, debenzylidenation, and 6-O-selective glycosylation with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), and finally by deprotection.  相似文献   

2.
The sodium salts of the 6-sulfate 7, the 4-sulfate 10, and the 4,6-disulfate 12 of benzyl 3-O-(beta-D-glucopyranosyl uronate)-beta-D-galactopyranoside (5) have been synthesized. Methyl (2,3,4-tri-O-acetyl-1-bromo-1-deoxy-alpha-d-glucopyran)uronate (1) was coupled with benzyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-galactopyranoside (2) to yield 3. The benzylidene acetal of 3 was hydrolyzed to give benzyl 2-O-benzoyl-3-O-[methyl (2,3,4-tri-O-acetyl-beta-D-glucopyranosyl)uronate]-beta-D-galactopyra noside (4). Compound 4 was utilized as a key intermediate to prepare the sulfated disaccharides 7,10, and 12. Direct sulfation of 4 with sulfur trioxide-trimethylamine for 2 days yielded the 6-sulfate 6. The 4,6-disulfate 11 was accessible by running the reaction under the same conditions for 14 days. The 4-sulfate 9 was obtained after protecting the 6-OH group of 4 by reaction with benzoyl imidazole to give the 6-benzoate 8, followed by sulfation under vigorous conditions. Treatment of the protected compounds 4, 6, 9, and 11 with aqueous sodium hydroxide in tetrahydrofuran gave the unprotected 5, 7, 10, and 12, respectively.  相似文献   

3.
Radiolabelled disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and sulfoiduronate sulfatase have been prepared from dermatan sulfate by application in sequence of N-deacetylation, deaminative cleavage, and reduction with NaBT4. The yield of disaccharides was approximately 87% of the total oligosaccharide fraction. Five disaccharides were isolated and tentatively identified. The major disaccharide, O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA-anT4S), represented approximately 75% of the total disaccharide fraction. The other disaccharides were O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (IdoA2S-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 4-sulfate (GlcA-anT4S), O-(beta-D-glucopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol 6-sulfate (GlcA-anT6S), and O-(alpha-L-idopyranosyluronic acid)-(1 leads to 3)-2,5-anhydro-D-[1-3H]talitol (IdoA-anT), which represented approximately 4.5, 11.2, 1.0, and 1.8%, respectively, of the total disaccharide fraction. When incubated with cultured skin-fibroblasts from normal controls, IdoA-anT4S was shown to be a sensitive substrate for alpha-L-iduronidase to produce 2,5-anhydro-D-talitol 4-sulfate (anT4S). Activity toward IdoA-anT4S was not observed with fibroblast homogenates from alpha-L-iduronidase-deficient patients (Mucopolysaccharidosis Type I). Similarly, normal-fibroblast homogenates degraded GlcA-anT6S to anT6S, and GlcA-anT4S to anT4S, at a rate 6 to 8 times greater than found for fibroblasts from beta-D-glucuronidase-deficient patients (Mucopolysaccharidosis Type VII). IdoA-anT4S was hydrolysed by alpha-L-iduronidase at a rate 365 times greater than that for IdoA-anT. Sulfation of the anhydro-D-[1-3H]talitol residues is an important structural determinant in the mechanism of action of alpha-L-iduronidase on disaccharide substrates. IdoA2S-anT4S was degraded to IdoA-anT4S and then to anT4S by normal-fibroblast homogenates, whereas fibroblasts from alpha-L-iduronidase-deficient and sulfoiduronate sulfatase-deficient (Mucopolysaccharidosis Type II) patients produced considerably decreased levels of anT4s and IdoA-anT4S (and anT4S), respectively.  相似文献   

4.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

5.
The sulfated pentasaccharide benzyl O-(3-O-sulfo-beta-D-galactopyranosyl)-(1-->3)-O-[(alpha-L-fucopyranosyl)-(1-->4)]-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1-->3)-O-(beta-D-galactopyranosyl)-(1-->4)-O-beta-D-glucopyranoside sodium salt was synthesized using a chemo-enzymatic approach. Lacto-N-tetraose, obtained from two disaccharides [4-methoxybenzyl O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phtalimido-beta-D-glucopyranoside and benzyl 2,6-di-O-acetyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-acetyl-beta-D-glucopyranoside], was regioselectively sulfated at the 3 OH position of the terminal galactose using the stannylene procedure. The fucosylation of the sulfated tetrasaccharide was performed using soluble or immobilized fucosyltransferase FucT-III to give the title compound.  相似文献   

6.
The syntheses are reported of beta-D-GlcpA-(1-->3)-beta-D-GalpNAc-(1-->4)-beta-D-GlcpA-(1- ->3)-beta-D-GalpNAc-(1-->4)-beta-D-GlcpA-(1-->OMe), O-sulfonated at C-4 or C-6 of the aminosugar moieties, which represent structural elements of chondroitin 4- and 6-sulfate proteoglycans. Starting from a synthetic disaccharide glycosyl acceptor, the stepwise or blockwise construction of the sugar backbone with appropriate synthons led to a pentasaccharide tetraol, which was used as a common intermediate. Selective 6-O-sulfonation of this tetraol, followed by saponification, gave the 6-sulfate derivative, whereas selective 6-O-benzoylation, followed by O-sulfonation and saponification, afforded the 4-sulfate derivative as their sodium salts.  相似文献   

7.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   

8.
The polysaccharide isolated by alcohol precipitation of Aloe vera mucilaginous gel was found to have a Man:Glc:Gal:GalA:Fuc:Ara:Xyl ratio of 120:9:6:3:2:2:1 with traces of Rha and GlcA. Linkage analysis of the endo-(1-->4)-beta-d-mannanase-treated sample yielded Manp-(1--> (approximately 26%), 4-Manp (approximately 53%), 2,4-Manp (approximately 3%), 3,4-Manp (approximately 1%), 4,6-Manp (approximately 1%), 4-Glcp (approximately 5%), 4-Xylp (approximately 1%), Xylp-(1--> (approximately 2%), Galp-(1--> (approximately 5%), and traces of 4,6-Galp and 3,6-Galp. Hydrolysis with strong acids produced a mixture of short oligosaccharides and an acid-resistant fraction containing greater relative fractions of Manp-(1-->, Araf-(1-->, Xylp-(1-->, and 4-Xylp than the bulk polysaccharide. NMR analysis of oligosaccharides generated by endo-(1-->4)-beta-D-mannanase and acid hydrolysis showed the presence of di-, tri-, and tetrasaccharides of 4-beta-Manp, beta-Glcp-(1-->4)-Man, beta-Glcp-(1-->4)-beta-Manp-(1-->4)-Man, and beta-Manp-(1-->4)-[alpha-Galp-(1-->6)]-Man, consistent with a backbone containing alternating -->4)-beta-Manp-(1--> and -->4)-beta-Glcp-(1--> residues in a approximately 15:1 ratio. Analysis of the sample treated sequentially with endo-(1-->4)-beta-d-mannanase and alpha-D-galactosidase showed that the majority of alpha-Galp-(1--> residues were linked to O-2, O-3, or O-6 of -->4)-beta-Manp-(1--> residues, with approximately 16 -->4)-beta-Manp-(1--> residues between side chains. Our data provide direct evidence of a previously proposed glucomannan backbone, but draw into question previously proposed side-chain structures.  相似文献   

9.
Four new ether diglycosides (1-4), named matayosides A-D, were isolated from the root bark of Matayba guianensis, a plant exhibiting in vitro antiplasmodial activity. They were identified as hexadecyl-[O-2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)]-6-O-palmitoyl-beta-D-glucopyranoside, hexadecyl-[O-2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)]-4,6-di-O-acetyl-beta-D-glucopyranoside, hexadecyl-[O-2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)]-3,6-di-O-acetyl-beta-D-glucopyranoside and hexadecyl-[O-2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)]-6-O-acetyl-beta-D-glucopyranoside, respectively. Their structures were established using one- and two-dimensional NMR techniques, mass spectrometry (MS) and MS/MS experiments. The compounds were found to inhibit the growth of Plasmodium falciparum in vitro with IC50 values ranging from 2.5 to 8.9 microg/mL.  相似文献   

10.
Thirty-six naturally occurring compounds, including four C10-acetylenic glycosides and a lignan, were isolated from the whole plants of Saussurea cordifolia. Their structures were elucidated by means of spectroscopic and chemical methods to be 4,6-decadiyne-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (1), 4,6-decadiyne-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (2), (8E)-decaene-4, 6-diyn-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (3), (8Z)-decaene-4,6-diyn-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (4), and (2R, 3S, 4S)-4-(4-hydroxy-3-methoxybenzyl)-2-(5-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-tetrahydrofuran-3-ol (5).  相似文献   

11.
The water-soluble acid agaran isolated from Acanthophora spicifera (Rhodophyta) was submitted to alkaline treatment for the complete cyclization of alpha-L-Galp 6-sulfate to 3,6-An-alpha-L-Galp units. The modified agaran was then partially depolymerized using partial reductive hydrolysis. The resulting oligosaccharide mixture was fractionated by adsorption and ion-exchange chromatography. Fractions were purified by gel-filtration chromatography and studied by ESIMS and NMR spectroscopy, including 1D 1H, 13C, DEPT and 2D 1H, 1H COSY, TOCSY and 1H, 13C HMQC procedures. The following neutral, pyruvylated, sulfated and sulfated/pyruvylated disaccharide alditols were obtained: beta-D-Galp-(1-->4)-3,6-An-L-GalOH; 4,6-O-(1-carboxyethylidene)-beta-D-Galp-(1-->4)-3,6-An-L-GalOH; beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH and 4,6-O-(1-carboxyethylidene)-beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH.  相似文献   

12.
Structural analysis of the lipopolysaccharide (LPS) from nontypeable Haemophilus influenzae strain 981 has been achieved using NMR spectroscopy and ESI-MS on O-deacylated LPS and core oligosaccharide (OS) material as well as by ESI-MSn on permethylated dephosphorylated OS. A heterogeneous glycoform population was identified, resulting from the variable length of the OS branches attached to the glucose residue in the common structural element of H. influenzae LPS, l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-[beta-d-Glcxp-(1-->4)]-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A. Notably, the O-6 position of the beta-d-Glcp residue was either substituted by PCho or the disaccharide branch beta-d-Galp-(1-->4)-d-alpha-d-Hepp, while the O-4 position was substituted by the globotetraose unit, beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp, or sequentially truncated versions thereof. This is the first time a branching sugar residue has been reported in the outer-core region of H. influenzae LPS. Additionally, a PEtn group was identified at O-3 of the distal heptose residue in the inner-core.  相似文献   

13.
The chemical structure and the sequence of repeating units in ulvans of similar compositions from two different Ulva rigida samples collected in the Canary Islands and in Brittany were studied after ulvan-lyase degradation and NMR spectroscopic analysis of the reaction products. Both ulvans were composed of ulvanobiuronic acid 3-sulfate type A [-->4)-beta-D-GlcA-(1-->4)-alpha-L-Rha 3-sulfate-(1-->] (symbolised as A3s) and contained disaccharides composed of [-->4)-beta-D-Xyl-(1-->4)-alpha-L-Rha 3-sulfate-(1-->] and [-->4)-beta-D-Xyl 2-sulfate-(1-->4)-alpha-L-Rha 3-sulfate], respectively referred to as ulvanobiose 3-sulfate (U3s) and ulvanobiose 2',3-disulfate (U2's,3s). In the Canary Islands sample, these U3s and U2's,3s occurred dispersed among A3s sequences and as short blocks of two or three units. In contrast, in the Brittany samples, these units were dispersed among A3s structures and next to A3s units branched at O-2 of alpha-L-Rha 3-sulfate by a terminal beta-D-GlcA and symbolised as A2g,3s. However, more complex structures are likely to occur in the enzyme resistant fraction remaining from this ulvan. An average structure sequence of these two ulvans was proposed. The transposition of the 13C NMR data of the new identified structures to the parent polysaccharides was not possible, probably due to the different sequence distributions affecting the carbons chemical shifts.  相似文献   

14.
Nontypeable Haemophilus influenzae (NTHi) is a common commensal of the human upper respiratory tract and is associated with otitis media in children. The structures of the oligosaccharide portions of NTHi lipopolysaccharide (LPS) from several otitis media isolates are now well characterized but it is not known whether there are structural differences in LPS from colonizing, nondisease associated strains. Structural analysis of LPS from nondisease associated NTHi strains 11 and 16 has been achieved by the application of high-field NMR techniques, ESI-MS, ESI-MSn, capillary electrophoresis coupled to ESI-MS, composition and linkage analyses on O-deacylated LPS and core oligosaccharide material. This is the first study to report structural details on LPS from strains taken from the nasopharynx from healthy individuals. Both strains express identical structures and contain the common element of H. influenzae LPS, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-lipid A, in which each heptose is elongated by a single hexose residue with no further oligosaccharide extensions. In the major Hex3 glycoform, the terminal Hepp residue (HepIII) is substituted at the O-2 position by a beta-D-Galp residue and the central Hepp residue (HepII) is substituted at O-3 by a alpha-D-Glcp residue. Notably, the strains express two phosphocholine (PCho) substituents, one at the O-6 position of alpha-D-Glcp and the other at the O-6 position of beta-D-Galp. Major acetylation sites were identified at O-4 of Gal and O-3 of HepIII. Additionally, both strains express glycine, and strain 11 also expresses detectable amounts of N-acetylneuraminic acid.  相似文献   

15.
Structural analysis of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae strain 1003 has been achieved by the application of high-field NMR techniques, ESI-MS, capillary electrophoresis coupled to ESI-MS, composition and linkage analyses on O-deacylated LPS and core oligosaccharide material. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PP Etn-->4]-alpha-Kdop-(2-->6)-Lipid A, in which the beta-D-Glcp residue is substituted by phosphocholine at O-6 and an acetyl group at O-4. A second acetyl group is located at O-3 of the distal heptose residue (HepIII). HepIII is chain elongated at O-2 by either a beta-D-Glcp residue (major), lactose or sialyllactose (minor, i.e. alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp), where a third minor acetylation site was identified at the glucose residue. Disialylated species were also detected. In addition, a minor substitution of ester-linked glycine at HepIII and Kdo was observed.  相似文献   

16.
The total degradation of heparin by the joint action of a purified heparinase and a heparitinase from Flavobacterium heparinum is reported. The heparinase acts directly upon heparin, yielding 52% of a trisulfated disaccharide (O-(alpha-L-ido-4-enepyranosyluronic acid 2-sulfate)-(1leads to 4)-2sulfoamino-2-deoxy-D-glucose 6-sulfate) and 40% of a tetrasaccharide besides small amounts of hexa- and disaccharides. The tetrasaccharide is in turn completely degraded by the heparitinase, forming trisulfated disaccharide and disulfated disaccharide (O-(alpha-D-glyco-4-enepyranosyluronic acid)-(1leads to 4)-2-sulfoamino-2-deoxy-D-glucose 6-sulfate) in equal amounts. These and other results indicate that the tri- and disulfated disaccharides are linked alternately, in a proportion of 3:1, respectively. The primary structure of heparin and the mode of action of the heparinase and the heparitinase are proposed based on the analysis of the different products formed by the action of the enzymes.  相似文献   

17.
Zhang J  Kong F 《Carbohydrate research》2003,338(17):1719-1725
beta-D-GlcpA-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)[-beta-D-Xylp-(1-->2)]-alpha-D-Manp, the repeating unit of the exopolysaccharide from Cryptococcus neoformans serovar A, was synthesized as its allyl glycoside. Thus, 3-O-selective acetylation of allyl 4,6-O-benzylidene-alpha-D-mannopyranoside afforded 2, and subsequent glycosylation of 2 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate furnished the beta-(1-->2)-linked disaccharide 4. Debenzylidenation followed by benzoylation gave allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-3-O-acetyl-4,6-di-O-benzoyl-alpha-D-mannopyranoside (5), and selective 3-O-deacetylation gave the disaccharide acceptor 6. Coupling of 6 with 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate yielded the trisaccharide 8, and subsequent deallylation and trichloroacetimidation gave 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-[2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)]-4,6-di-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (9). Condensation of the trisaccharide donor 9 with the disaccharide acceptor 6 gave the pentasaccharide 10 whose 2-O-deacetylation gave the acceptor 11. Glycosylation of 11 with methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate and subsequent deprotection gave the target hexasaccharide.  相似文献   

18.
The preparation of the enzyme iduronate sulfatase from human placenta has been undertaken. The substrate O-(alpha-L-idopyranosyluronic acid 2-sulfate) (1 leads to 4)-2,5-anhydro-D-[3H]mannitol 6-sulfate was used to measure the enzymatic activity. The enzyme shows a pH optimum of 4.0 in 0.1 M sodium formiate or acetate buffer. Chromatography on DE-52 gives a 5.4 fold purification. The enzyme is inhibited by NaCl or KCl: in 20 mM salt the reaction rate was only 63% and 34% respectively. Inhibition by salt can be removed by extensive dialysis after the chromatographic step.  相似文献   

19.
The syntheses are reported for the first time of alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), its disulfated analogue alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), and of beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->OMe), which represent structural fragments of dermatan sulfate, unavailable directly by chemical or enzymatic degradation of the glycosaminoglycan polymer. These molecules were readily obtained from a pair of key disaccharide intermediates, in which the relative difference of stability of the D-GalNAc 4-hydroxy protecting groups (acetate or pivalate) toward saponification conditions allowed access to various sulfoforms from a common precursor. For the preparation of these blocks, the 4-O-pivaloyl-D-galacto moiety was readily obtained through a one-pot stereospecific intramolecular nucleophilic displacement on an easily available 3-O-pivaloyl-D-gluco precursor, and the L-IdoA moiety through selective radical oxidation at C-6 of a L-ido 4,6-diol derivative with oxoammonium salts.  相似文献   

20.
alpha,alpha-Trehalose 2-sulfate, the core carbohydrate of sulfatides of Mycobacterium tuberculosis, and the 3-sulfate isomer were synthesized by sulfation of 4,6:4',6'-di-O-benzylidene-alpha,alpha-trehalose with pyridine-sulfur trioxide complex to give the 2- and 3-sulfates, which were separated by column chromatography. The ammonium 2-sulfate salt wa was identical with the natural product obtained from the principal sulfatide (SL-I) of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号