首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Anand  J Lindstrom 《Genomics》1992,13(4):962-967
We have determined the chromosomal location of seven human neuronal nicotinic acetylcholine receptor subunit genes by genomic Southern analysis of hamster/human somatic cell hybrid DNAs. The beta 2 subunit gene was localized to human chromosome 1, the alpha 2 and beta 3 subunit genes were localized to human chromosome 8, the alpha 3, alpha 5, and beta 4 subunit genes were localized to human chromosome 15, and the alpha 4 subunit gene was localized to human chromosome 20. Mapping of the beta 2 subunit gene to chromosome 1 establishes a syntenic group with the amylase gene locus on human chromosome 1 and mouse chromosome 3, while mapping of the alpha 3 subunit gene to chromosome 15 confirms the existence of a syntenic group with the mannose phosphate isomerase gene locus on human chromosome 15 and mouse chromosome 9.  相似文献   

2.
应用涂染技术研究人和猕猴染色体的同源性   总被引:2,自引:0,他引:2  
黄浩杰  余龙 《动物学报》1998,44(4):458-465
用24种人类染色体探针对人和猕猴G-显带染色体进行涂染。结果显示:人类所有染色体在猕猴的染色体组里都有其同源染色体或染色体片段。  相似文献   

3.
Prevous work, using human-mouse somatic cell hybrids, has localized the structural gene for human skin type I procollagen (COL 1) to chromosome 17. One of these hybrids contained only the long arm of human chromosome 17, translocated onto a mouse chromosome, as human chromosomal material. This hybrid was treated with adenovirus 12, and various clones were picked which contained different-sized fragments of human chromosome 17 that were still translocated onto a mouse chromosome. Measurements of these fragments, combined with assays for human COL 1 production and galactose kinase (GAK) activity (also localized on the long arm of human chromosome 17), has allowed us to regionally map the structural gene for human COL 1 to an area just distal to the thymidine kinase (TK) and GAK genes within bands q21 and q22 on human chromosome 17.  相似文献   

4.
Mouse-human somatic cell hybrids between different mouse and human cells were studied for the expression of human hexosaminidases A and B activities. The expression of human hexosaminidase B in the hybrids was found to segregate concordantly with the presence of the human chromosome 5. Mouse-human hybrid clones containing either the human chromosomes 5 and 7 only or the human chromosome 7 only were also included in this study. Expression of human hexosaminidase B activity was detected only in those clones containing human chromosome 5. These results indicate that the gene(s) for human hexosaminidase B is located on chromosome 5. No hexosaminidase A activity was detected in clones which contained either human chromosomes 5 and 7 or chromosome 7.  相似文献   

5.
The chromosomal location of the murine macrophage colony-stimulating factor (Csfm) gene was determined by interspecific backcross analysis. We mapped Csfm to mouse chromosome 3, 2.5 cM distal to Ngfb and Nras and 1.3 cM proximal to Amy-2. CSFM maps to human chromosome 5q, while AMY2, NGFB, and NRAS map to human chromosome 1p. The chromosomal location of Csfm thus disrupts a previously identified conserved linkage group between mouse chromosome 3 and human chromosome 1. The location of Csfm also identifies yet another mouse chromosome that shares synteny with human chromosome 5q, a region involved in several different types of myeloid disease.  相似文献   

6.
Evidence for assigning the locus determining the structure of adenine phosphoribosyltransferase (APRT) to human chromosome No. 16 is presented. Hybrids of APRT-deficient mouse cells and of human fibroblasts having normal APRT were isolated by fusing the parental cells with Sendai virus, blocking de novo purine nucleotide synthesis with azaserine and selecting for hybrids that could use exogenous adenine. The hybrid clones that were studied had only APRT activity that was indistinguishable from human APRT with regard to electrophoretic migration and reaction with antibodies against the partially purified human enzyme. No. 16 was the only human chromosome consistently present in all of the clones, and in one clone, it was the only human chromosome detected. Selection against hybrid cells with 2,6-diaminopurine (DAP) yielded DAP-resistant survivors that lacked chromosome No. 16. One hybrid that originally had an intact No. 16 yielded adenine-utilizing subclones that lacked No. 16 but had a new submetacentric chromosome. The distribution of centromere-associated heterochromatin and the fluorescence pattern indicated that this chromosome consisted of a mouse telocentric chromosome and the long arm of No. 16. Cells having the submetacentric chromosome had human APRT. Both the enzyme and the chromosome were absent in DAP-resistant derivatives. These results suggest that the structure of APRT is defined by a locus on the long arm of human chromosome No. 16.  相似文献   

7.
Human chromosome 19 carries a poliovirus receptor gene   总被引:1,自引:0,他引:1  
The chromosome complements of human/mouse hybrid cell lines of mouse 3T3-4E and RAG parentage have been analyzed using chromosome banding methods. Three lines that were susceptible to lytic infection with poliovirus contained eleven to seventeen human chromosomes, including chromosome 19. Polio-resistant sublines of these contained no chromosome 19 and showed no other consistent change in the complement of human chromosomes. Human chromosome 19 therefore is essential for polio-sensitivity. Since polio sensitivity was correlated with receptor activity in these lines, we conclude that chromosome 19 carries the structural gene for the poliovirus receptor. Sensitivity to echo-7 and Rhino-1A viruses could not be related to the presence of a specific human chromosome.  相似文献   

8.
In this study we have utilized human elastin cDNAs in molecular hybridizations to establish the chromosomal location of the human elastin gene. First, in situ hybridizations were performed with metaphase chromosomes from phytohemagglutinin-stimulated human peripheral blood lymphocytes. In three separate experiments using two different regions of human elastin cDNAs, the distribution of grains was found to be concentrated on the long arm of chromosome 7 within the [q11.1-21.1] region, and the peak number of grains coincided with the locus 7q11.2. Second, hybridizations with a panel of human-rodent cell hybrids showed concordance with human chromosome 7. Third, PCR analyses with elastin-specific primers of DNA from a hybrid cell line containing chromosome 7 as the only human chromosome yielded a product of the expected size, while DNA containing human chromosome 2, but not chromosome 7, did not result in a product. The results indicate that the human elastin gene is located in the proximal region of the long arm of chromosome 7. The precise localization of the elastin gene in the human genome is useful in establishing genetic linkage between inheritance of an allele with a mutated elastin gene and a heritable disorder.  相似文献   

9.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, gamma-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

10.
A genomic cosmid library was constructed from a Chinese hamster/human hybrid cell containing human intact chromosome 22 as its only human component. Of 1000 cosmids with inserts derived from human chromosome 22, 191 were tested for restriction fragment length polymorphisms (RFLPs). As a result, 64 clones detected RFLPs, including five variable number of tandem repeats systems. Of the remaining 127 cosmids, 111 detected a single copy sequence on human chromosome 22. Five somatic cell hybrids allowed us to assign all of the 64 polymorphic cosmids and 44 non-polymorphic cosmids to four different regions of human chromosome 22. In two patients with DiGeorge syndrome, one of the cosmids that had been sublocalized to 22pter-q11 detected hemizygosity. These 108 cosmid markers regionally assigned to human chromosome 22 should be useful for the construction of long-range physical maps and the identification of genetic alterations on the chromosome.  相似文献   

11.
Interspecific backcross animals from a cross between C57BL/6J and Mus spretus mice were used to generate a comprehensive linkage map of mouse chromosome 11. The relative map positions of genes previously assigned to mouse chromosome 11 by somatic cell hybrid or genetic backcross analysis were determined (Erbb, Rel, 11-3, Csfgm, Trp53-1, Evi-2, Erba, Erbb-2, Csfg, Myhs, Cola-1, Myla, Hox-2 and Pkca). We also analyzed genes that we suspected would map to chromosome 11 by virtue of their location in human chromosomes and the known linkage homologies that exist between murine chromosome 11 and human chromosomes (Mpo, Ngfr, Pdgfr and Fms). Two of the latter genes, Mpo and Ngfr, mapped to mouse chromosome 11. Both genes also mapped to human chromosome 17, extending the degree of linkage conservation observed between human chromosome 17 and mouse chromosome 11. Pdgfr and Fms, which are closely linked to II-3 and Csfgm in humans on chromosome 5, mapped to mouse chromosome 18 rather than mouse chromosome 11, thereby defining yet another conserved linkage group between human and mouse chromosomes. The mouse chromosome 11 linkage map generated in these studies substantially extends the framework for identifying homologous genes in the mouse that are involved in human disease, for elucidating the genes responsible for several mouse mutations, and for gaining insights into chromosome evolution and genome organization.  相似文献   

12.
The human fibroblast interferon gene beta 1 was mapped to human chromosome 9. Sequence homology with a beta 1 cDNA clone was detected in both genomic DNA and induced mRNA of human/mouse or human/hamster somatic cell hybrids containing human chromosome 9, but not in lines lacking this chromosome or those retaining a complex translocation involving chromosomes 9 and 11. Interferon mRNA that did not share sequence homology with the beta 1 cDNA clone was detected in lines containing human chromosomes 2 and 5 but lacking chromosome 9, suggesting the presence of other unlinked interferon sequences in the human genome.  相似文献   

13.
The irs1 and irs1SF hamster cell lines are mutated for the XRCC2 and XRCC3 genes, respectively. Both show heightened sensitivity to ionizing radiation and particularly to the DNA cross-linking chemical mitomycin C (MMC). Frequencies of spontaneous chromosomal aberration have previously been reported to be higher in these two cell lines than in parental, wild-type cell lines. Microcell-mediated chromosome transfer was used to introduce complementing or non-complementing human chromosomes into each cell line. irs1 cells received human chromosome 7 (which contains the human XRCC2 gene) or, as a control, human chromosome 4. irs1SF cells received human chromosome 14 (which contains the XRCC3 gene) or human chromosome 7. For each set of hybrid cell lines, clones carrying the complementing human chromosome recovered MMC resistance to near-wild-type levels, while control clones carrying noncomplementing chromosomes remained sensitive to MMC. Fluorescence in situ hybridization with a human-specific probe revealed that the human chromosome in complemented clones remained intact in almost all cells even after extended passage. However, the human chromosome in noncomplemented clones frequently underwent chromosome rearrangements including breaks, deletions, and translocations. Chromosome aberrations accumulated slowly in the noncomplemented clones over subsequent passages, with some particular deletions and unbalanced translocations persistently transmitted throughout individual subclones. Our results indicate that the XRCC2 and XRCC3 genes, which are now considered members of the RAD51 gene family, play essential roles in maintaining chromosome stability during cell division. This may reflect roles in DNA repair, possibly via homologous recombination.  相似文献   

14.
The murine glial fibrillary acid protein (GFAP) gene is located on chromosome 11 in close proximity to the genes encoding transforming protein p53 (Trp53) and myeloperoxidase (Mpo). Both Trp53 and Mpo have been mapped to human chromosome 17, but the chromosomal assignment of human GFAP has not been previously determined. In this report, we have amplified a cDNA fragment encoding a portion of GFAP from human brain and have used this probe to screen a mouse x human somatic cell hybrid panel. The results show that a human-specific GFAP species of approx 3.7 kb maps to one of these lines, TMS5, which contains chromosome 17 as its only human chromosome. On the basis of these data we speculate that there may be evolutionary relatedness between GFAP and other genes that map to both murine chromosome 11 and human chromosome 17.  相似文献   

15.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

16.
Human chromosome 21-encoded cDNA clones   总被引:9,自引:0,他引:9  
We have employed two strategies to isolate random cDNA clones encoded by chromosome 21. In the first approach, a cDNA library representing expressed genes of WA17, a mouse-human somatic cell hybrid carrying chromosome 21 as its sole human chromosome, was screened with total human DNA to identify human chromosome 21-specific cDNAs. The second approach utilized previously characterized single-copy genomic fragments from chromosome 21 as probes to retrieve homologous coding sequences from a human fetal brain cDNA library. Six cDNA clones on chromosome 21 were obtained in this manner. Two were localized to the proximal long arm of chromosome 21, two to the distal portion of the long arm, and one to the region of 21q22 implicated in the pathology of Down syndrome.  相似文献   

17.
Comparative FISH mapping of PAC clones covering almost 3 Mb of the human AZFa region in Yq11.21 to metaphases of human and great apes unravels breakpoints that were involved in species-specific Y chromosome evolution. An astonishing clustering of evolutionary breakpoints was detected in the very proximal region on the long arm of the human Y chromosome in Yq11.21. These breakpoints were involved in deletions, one specific for the human and another for the orang-utan Y chromosome, in a duplicative translocation/transposition specific for bonobo and chimpanzee Y chromosomes and in a pericentric inversion specific for the gorilla Y chromosome. In addition, our comparative results allow the deduction of a model for the human Y chromosome evolution.  相似文献   

18.
Ionizing radiation can induce chromosome instability that is transmitted over many generations after irradiation in the progeny of surviving cells, but it remains unclear why this instability can be transmitted to the progeny. To acquire knowledge about the transmissible nature of genomic instability, we transferred an irradiated human chromosome into unirradiated mouse recipient cells by microcell fusion and examined the stability of the transferred human chromosome in the microcell hybrids. The transferred chromosome was stable in all six microcell hybrids in which an unirradiated human chromosome had been introduced. In contrast, the transferred chromosome was unstable in four out of five microcell hybrids in which an irradiated human chromosome had been introduced. The aberrations included changes in the irradiated chromosome itself and rearrangements with recipient mouse chromosomes. Thus the present study demonstrates that genomic instability can be transmitted to the progeny of unirradiated cells by a chromosome exposed to ionizing radiation, implying that the instability is caused by the irradiated chromosome itself and also that the instability is induced by the nontargeted effect of radiation.  相似文献   

19.
Using a human-mouse monochromosomal hybrid, BG15-6, that contains an intact human chromosome 5, we isolated four monoclonal antibodies, 2A10, 3H9, 5G9, and 6G12, as chromosome marker antibodies recognizing cell surface antigens specific for human chromosome 5. The binding patterns of these antibodies to BG15 subclones containing fragments of human chromosome 5 indicated that 2A10, 3H9, and 6G12 recognized the antigens produced by genes located on 5pterq22, and that 5G9 recognized the antigen produced by a gene located on 5q23. Cells containing human chromosome 5 were very effectively sorted in a fluorescence-activated cell sorter (FACS) using monoclonal antibody 6G12. This method for sorting cells containing human chromosome 5 or an appropriate fragment of this chromosome from among human-rodent hybrid cells should be very useful in studies on gene expression, gene cloning and gene mapping.by M. Trendelenburg  相似文献   

20.
The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号