首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zuo Z  Liew OW  Chen G  Chong PC  Lee SH  Chen K  Jiang H  Puah CM  Zhu W 《Journal of virology》2009,83(2):1060-1070
The NS2B cofactor is critical for proteolytic activation of the flavivirus NS3 protease. To elucidate the mechanism involved in NS2B-mediated activation of NS3 protease, molecular dynamic simulation, principal component analysis, molecular docking, mutagenesis, and bioassay studies were carried out on both the dengue virus NS3pro and NS2B-NS3pro systems. The results revealed that the NS2B-NS3pro complex is more rigid than NS3pro alone due to its robust hydrogen bond and hydrophobic interaction networks within the complex. These potent networks lead to remodeling of the secondary and tertiary structures of the protease that facilitates cleavage sequence recognition and binding of substrates. The cofactor is also essential for proper domain motion that contributes to substrate binding. Hence, the NS2B cofactor plays a dual role in enzyme activation by facilitating the refolding of the NS3pro domain as well as being directly involved in substrate binding/interactions. Kinetic analyses indicated for the first time that Glu92 and Asp50 in NS2B and Gln27, Gln35, and Arg54 in NS3pro may provide secondary interaction points for substrate binding. These new insights on the mechanistic contributions of the NS2B cofactor to NS3 activation may be utilized to refine current computer-based search strategies to raise the quality of candidate molecules identified as potent inhibitors against flaviviruses.  相似文献   

2.
Zhou H  Singh NJ  Kim KS 《Proteins》2006,65(3):692-701
The West Nile virus (WNV) NS3 serine protease, which plays an important role in assembly of infective virion, is an attractive target for anti-WNV drug development. Cofactors NS2B and NS4A increase the catalytic activity of NS3 in dengue virus and Hepatitis C virus, respectively. Recent studies on the WNV-NS3 characterize the catalytically active form of NS3 by tethering the 40-residue cofactor NS2B. It is suggested that NS2B is essential for the NS3 activity in WNV, while there is no information of the WNV-NS3-related crystal structure. To understand the role of NS2B/substrate in the NS3 catalytic activity, we built a series of models: WNV-NS3 and WNV-NS3-NS2B and WNV-NS3-NS2B-substrate using homology modeling and molecular modeling techniques. Molecular dynamics (MD) simulations were performed for 2.75 ns on each model, to investigate the structural stabilization and catalytic triad motion of the WNV NS3 protease with and without NS2B/substrate. The simulations show that the NS3 rearrangement occurs upon the NS2B binding, resulting in the stable D75-OD1...H51-NH hydrogen bonding. After the substrate binds to the NS3-NS2B active site, the NS3 protease becomes more stable, and the catalytic triad is formed. These results provide a structural basis for the activation and stabilization of the enzyme by its cofactor and substrate.  相似文献   

3.

Background

The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor.

Methods

In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution.

Findings

In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors.

Conclusion

Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.  相似文献   

4.
The N-terminal part of the NS3 protein from dengue virus contains a trypsin-like serine protease responsible for processing the nonstructural region of the viral polyprotein. Enzymatic activity of the NS2B-NS3(pro) precursor incorporating a full-length NS2B cofactor of dengue virus type 2 was examined by using synthetic dodecamer peptide substrates encompassing native cleavage sequences of the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 polyprotein junctions. Cleavage of the dansylated substrates was monitored by a HPLC-based assay and kinetic parameters for K(1M), k(cat) and k(cat)/K(m) were obtained. The data presented here show that NS2B-NS3(pro) expressed in recombinant E. coli can be renatured to an active protease which reacts in the absence of microsomal membranes with all 4 substrate peptides, albeit the molecule does not exhibit autoproteolytic processing at the NS2B/NS3 site. A marked difference in cleavage efficiency was found for the NS2B/NS3 substrate and the remaining 3 peptides based on the NS2A/NS2B, NS3/NS4A and NS4A/NS5 cleavage sites.  相似文献   

5.
The NS3 serine protase of Hepatitis C virus (HCV) requires NS4A protein as a cofactor for efficient cleavage at four sites in the nonstructural region. The cofactor activity has been mapped to the central hydrophobic region (aa 22-34) of this 54-amino-acid NS4A protein, and site-directed mutagenesis has identified alternating hydrophobic amino acids, particularly Ile25 and Ile29, as critically important. A double mutant of NS4A cofactor peptide, I25A/I29A, completely abolished the cofactor activity. We now report that the cofactor peptide activity in the I25A/I29A double mutant can be restored specifically by introducing a biotin-aminohexanoic acid fusion at the N-terminus. In addition, a similar N-terminal fusion of biotin-aminohexanoic acid with the wild-type 4A peptide significantly enhanced cofactor activity. Our data corroborate the crystal structure-based hypothesis of hydrophobic interaction between the N-terminus of NS4A and the N-terminal alpha(0) helix of NS3 protease.  相似文献   

6.
The two-component protease NS2B-NS3 of dengue virus mediates proteolytic processing of the polyprotein precursor and therefore represents a target for the development of antiviral drugs. The amino acid sequences of the NS3 serine protease and the NS2B cofactor exhibit relatively low degrees of conservation among the 4 serotypes thus suggesting that differences in enzyme activity exist which could modulate their susceptibility to future protease inhibitors. In this study we have addressed the question of functional similarity among the NS2B(H)-NS3pro proteases from 4 dengue virus serotypes by employing a uniform approach to clone, purify and assay proteolytic activity of these enzymes. Significant differences were observed for patterns of protein formation and expression levels in the E. coli host. Renaturation of the NS2B(H)-NS3pro precursors from dengue virus serotypes 2, 3 and 4 mediated by artificial chaperone-assisted refolding yielded enzymatically active proteases, whereas the enzyme from serotype 1 was obtained as soluble protein. Kinetic experiments using the GRR-amc substrate revealed comparable K(m) values while k(cat) values as obtained by active-site titration experiments displayed minor variations. Denaturation experiments demonstrated significant differences in half-life of the NS3 proteases from serotypes 2, 3 and 4 at 50 degrees C, whereas pH optima for all 4 enzymes were comparable.  相似文献   

7.
GB virus B (GBV-B) is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species), making it an attractive surrogate virus for in vivo testing of anti-HCV inhibitors in a small monkey model. It has been reported that the nonstructural protein 3 (NS3) serine protease of GBV-B shares similar substrate specificity with its counterpart in HCV. Authentic proteolytic processing of the HCV polyprotein junctions (NS4A/4B, NS4B/5A, and NS5A/5B) can be accomplished by the GBV-B NS3 protease in an HCV NS4A cofactor-independent fashion. We further characterized the protease activity of a full-length GBV-B NS3 protein and its cofactor requirement using in vitro-translated GBV-B substrates. Cleavages at the NS4A/4B and NS5A/5B junctions were readily detectable only in the presence of a cofactor peptide derived from the central region of GBV-B NS4A. Interestingly, the GBV-B substrates could also be cleaved by the HCV NS3 protease in an HCV NS4A cofactor-dependent manner, supporting the notion that HCV and GBV-B share similar NS3 protease specificity while retaining a virus-specific cofactor requirement. This finding of a strict virus-specific cofactor requirement is consistent with the lack of sequence homology in the NS4A cofactor regions of HCV and GBV-B. The minimum cofactor region that supported GBV-B protease activity was mapped to a central region of GBV-B NS4A (between amino acids Phe22 and Val36) which overlapped with the cofactor region of HCV. Alanine substitution analysis demonstrated that two amino acids, Val27 and Trp31, were essential for the cofactor activity, a finding reminiscent of the two critical residues in the HCV NS4A cofactor, Ile25 and Ile29. A model for the GBV-B NS3 protease domain and NS4A cofactor complex revealed that GBV-B might have developed a similar structural strategy in the activation and regulation of its NS3 protease activity. Finally, a chimeric HCV/GBV-B bifunctional NS3, consisting of an N-terminal HCV protease domain and a C-terminal GBV-B RNA helicase domain, was engineered. Both enzymatic activities were retained by the chimeric protein, which could lead to the development of a chimeric GBV-B virus that depends on HCV protease function.  相似文献   

8.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

9.
B Falgout  M Pethel  Y M Zhang    C J Lai 《Journal of virology》1991,65(5):2467-2475
The cleavages at the junctions of the flavivirus nonstructural (NS) proteins NS2A/NS2B, NS2B/NS3, NS3/NS4A, and NS4B/NS5 share an amino acid sequence motif and are presumably catalyzed by a virus-encoded protease. We constructed recombinant vaccinia viruses expressing various portions of the NS region of the dengue virus type 4 polyprotein. By analyzing immune precipitates of 35S-labeled lysates of recombinant virus-infected cells, we could monitor the NS2A/NS2B, NS2B/NS3, and NS3/NS4A cleavages. A polyprotein composed of NS2A, NS2B, and the N-terminal 184 amino acids of NS3 was cleaved at the NS2A/NS2B and NS2B/NS3 junctions, whereas a similar polyprotein containing only the first 77 amino acids of NS3 was not cleaved. This finding is consistent with the proposal that the N-terminal 180 amino acids of NS3 constitute a protease domain. Polyproteins containing NS2A and NS3 with large in-frame deletions of NS2B were not cleaved at the NS2A/NS2B or NS2B/NS3 junctions. Coinfection with a recombinant expressing NS2B complemented these NS2B deletions for NS2B/NS3 cleavage and probably also for NS2A/NS2B cleavage. Thus, NS2B is also required for the NS2A/NS2B and NS2B/NS3 cleavages and can act in trans. Other experiments showed that NS2B was needed, apparently in cis, for NS3/NS4A cleavage and for a series of internal cleavages in NS3. Indirect evidence that NS3 can also act in trans was obtained. Models are discussed for a two-component protease activity requiring both NS2B and NS3.  相似文献   

10.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 protease is responsible for all cytoplasmic cleavage events in viral polyprotein maturation. This study describes the first biochemical characterization of flavivirus protease activity using full-length NS3. Recombinant proteases were created by fusion of West Nile virus (WNV) NS2B(40) to full-length WNV NS3. The protease catalyzed two autolytic cleavages. The NS2B/NS3 junction was cleaved before protein purification. A second site at Arg(459) decreasing Gly(460) within the C-terminal helicase region of NS3 was cleaved more slowly. Autolytic cleavage reactions also occurred in NS2B-NS3 recombinant proteins from yellow fever virus, dengue virus types 2 and 4, and Japanese encephalitis virus. Cis and trans cleavages were distinguished using a noncleavable WNV protease variant and two types of substrates as follows: an inactive variant of recombinant WNV NS2B-NS3, and cyan and yellow fluorescent proteins fused by a dodecamer peptide encompassing a natural cleavage site. With these materials, the autolytic cleavages were found to be intramolecular only. Autolytic cleavage of the helicase site was insensitive to protein dilution, confirming that autolysis is intramolecular. Formation of an active protease was found to require neither cleavage of NS2B from NS3 nor a free NS3 N terminus. Evidence was also obtained for product inhibition of the protease by the cleaved C terminus of NS2B.  相似文献   

11.
A recombinant dengue 2 virus NS2B-NS3 protease (NS means non-structural virus protein) was compared with human furin for the capacity to process short peptide substrates corresponding to seven native substrate cleavage sites in the dengue viral polyprotein. Using fluorescence resonance energy transfer peptides to measure kinetics, the processing of these substrates was found to be selective for the Dengue protease. Substrates containing two or three basic amino acids (Arg or Lys) in tandem were found to be the best, with Abz-AKRRSQ-EDDnp being the most efficiently cleaved. The hydrolysis of dipeptide substrates Bz-X-Arg-MCA where X is a non-natural basic amino acid were also kinetically examined, the best substrates containing aliphatic basic amino acids. Our results indicated that proteolytic processing by dengue NS3 protease, tethered to its activating NS2B co-factor, was strongly inhibited by Ca2+ and kosmotropic salts of the Hofmeister's series, and significantly influenced by substrate modifications between S4 and S6'. Incorporation of basic non-natural amino acids in short peptide substrates had significant but differential effects on Km and k(cat), suggesting that further dissection of their influences on substrate affinity might enable the development of effective dengue protease inhibitors.  相似文献   

12.

Background  

The dengue virus two-component protease NS2B/NS3 mediates processing of the viral polyprotein precursor and is therefore an important determinant of virus replication. The enzyme is now intensively studied with a view to the structure-based development of antiviral inhibitors. Although 3-dimensional structures have now been elucidated for a number of flaviviral proteases, enzyme-substrate interactions are characterized only to a limited extend. The high selectivity of the dengue virus protease for the polyprotein precursor offers the distinct advantage of designing inhibitors with exquisite specificity for the viral enzyme. To identify important determinants of substrate binding and catalysis in the active site of the dengue virus NS3 protease, nine residues, L115, D129, G133, T134, Y150, G151, N152, S163 and I165, located within the S1 and S2 pockets of the enzyme were targeted by alanine substitution mutagenesis and effects on enzyme activity were fluorometrically assayed.  相似文献   

13.
The N-terminal domain of the hepatitis C virus (HCV) polyprotein containing the NS3 protease (residues 1027 to 1206) was expressed in Escherichia coli as a soluble protein under the control of the T7 promoter. The enzyme has been purified to homogeneity with cation exchange (SP-Sepharose HR) and heparin affinity chromatography in the absence of any detergent. The purified enzyme preparation was soluble and remained stable in solution for several weeks at 4 degrees C. The proteolytic activity of the purified enzyme was examined, also in the absence of detergents, using a peptide mimicking the NS4A/4B cleavage site of the HCV polyprotein. Hydrolysis of this substrate at the expected Cys-Ala scissile bond was catalyzed by the recombinant protease with a pseudo second-order rate constant (k(cat)/K(M)) of 205 and 196,000 M(-1) s(-1), respectively, in the absence and presence of a central hydrophobic region (sequence represented by residues 21 to 34) of the NS4A protein. The rate constant in the presence of NS4A peptide cofactor was two orders of magnitude greater than reported previously for the NS3 protease domain. A significantly higher activity of the NS3 protease-NS4A cofactor complex was also observed with a substrate mimicking the NS4B/5A site (k(cat)/K(M) of 5180 +/- 670 M(-1) s(-1)). Finally, the optimal formation of a complex between the NS3 protease domain and the cofactor NS4A was critical for the high proteolytic activity observed.  相似文献   

14.
The mosquito-borne dengue viruses are widespread human pathogens causing dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, placing 40% of the world's population at risk with no effective treatment. The viral genome is a positive strand RNA that encodes a single polyprotein precursor. Processing of the polyprotein precursor into mature proteins is carried out by the host signal peptidase and by NS3 serine protease, which requires NS2B as a cofactor. We report here the crystal structure of the NS3 serine protease domain at 2.1 A resolution. This structure of the protease combined with modeling of peptide substrates into the active site suggests identities of residues involved in substrate recognition as well as providing a structural basis for several mutational effects on enzyme activity. This structure will be useful for development of specific inhibitors as therapeutics against dengue and other flaviviral proteases.  相似文献   

15.
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.  相似文献   

16.
The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1 M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2BNS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.  相似文献   

17.
Crystal structure of the NS3 protease-helicase from dengue virus   总被引:2,自引:0,他引:2  
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.  相似文献   

18.
Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its “complete insolubility”, the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48–100) or the full-length NS2B (1–130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48–100;Δ77–84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection.  相似文献   

19.
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.  相似文献   

20.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号