首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thyA gene, which encodes thymidylate synthase (TS), of Lactococcus lactis CHCC373 was sequenced, including the upstream and downstream regions. We then deleted part of thyA by gene replacement. The resulting strain, MBP71 ΔthyA, was devoid of TS activity, and in media without thymidine, such as milk, there was no detectable dTTP pool in the cells. Hence, DNA replication was abolished, and acidification by MBP71 was completely unaffected by the presence of nine different phages tested at a multiplicity of infection (MOI) of 0.1. Nonreplicating MBP71 must be inoculated at a higher level than CHCC373 to achieve a certain pH within a specified time. For a pH of 5.2 to be reached in 6 h, the inoculation level of MBP71 must be 17-fold higher than for CHCC373. However, by adding a limiting amount of thymidine this could be lowered to just 5-fold the normal amount, while acidification was unaffected with MBP71 up to an MOI of 0.01. It was found that nonreplicating MBP71 produced largely the same products as CHCC373, though the acetaldehyde production of the former was higher.  相似文献   

2.
Lactococcus lactis MBP71 deltathyA (thymidylate synthase) cannot synthesize dTTP de novo, and DNA replication is dependent on thymidine in the growth medium. In the nonreplicating state acidification by MBP71 was completely insensitive to bacteriophages (M. B. Pedersen, P. R. Jensen, T. Janzen, and D. Nilsson, Appl. Environ. Microbiol. 68:3010-3023, 2002). For nonreplicating MBP71 the biomass increased 3.3-fold over the first 3.5 h, and then the increase stopped. The rate of acidification increased 2.3-fold and then started to decrease. Shortly after inoculation the lactic acid flux was 60% of that of exponentially growing MBP71. However, when nonspecific ATPase activity was incorporated into MBP71, the lactic acid flux was restored to 100% but not above that point, indicating that control over the flux switched from ATP demand to ATP supply (i.e., to sugar transport and glycolysis). As determined by growing nonreplicating cells with high ATPase activity on various sugar sources, it appeared that glycolysis exerted the majority of the control. ATPase activity also stimulated the rate of acidification by nonreplicating MBP71 growing in milk, and pH 5.2 was reached 40% faster than it was without ATPase activity. We concluded that ATPase activity is a functional means of increasing acidification by nonreplicating L. lactis.  相似文献   

3.
Lactococcus lactis MBP71 ΔthyA (thymidylate synthase) cannot synthesize dTTP de novo, and DNA replication is dependent on thymidine in the growth medium. In the nonreplicating state acidification by MBP71 was completely insensitive to bacteriophages (M. B. Pedersen, P. R. Jensen, T. Janzen, and D. Nilsson, Appl. Environ. Microbiol. 68:3010-3023, 2002). For nonreplicating MBP71 the biomass increased 3.3-fold over the first 3.5 h, and then the increase stopped. The rate of acidification increased 2.3-fold and then started to decrease. Shortly after inoculation the lactic acid flux was 60% of that of exponentially growing MBP71. However, when nonspecific ATPase activity was incorporated into MBP71, the lactic acid flux was restored to 100% but not above that point, indicating that control over the flux switched from ATP demand to ATP supply (i.e., to sugar transport and glycolysis). As determined by growing nonreplicating cells with high ATPase activity on various sugar sources, it appeared that glycolysis exerted the majority of the control. ATPase activity also stimulated the rate of acidification by nonreplicating MBP71 growing in milk, and pH 5.2 was reached 40% faster than it was without ATPase activity. We concluded that ATPase activity is a functional means of increasing acidification by nonreplicating L. lactis.  相似文献   

4.
Weiss B 《Journal of bacteriology》2007,189(5):2186-2189
Exogenous thymine must be converted to thymidine to enable a thyA (thymidylate synthase) mutant to grow. The deoxyribose in the thymidine comes from dUMP, which must first be dephosphorylated. The nucleotidase YjjG is critical for this step. A yjjG thyA mutant cannot use thymine for growth on a glucose minimal medium.  相似文献   

5.
The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.  相似文献   

6.
P Ross  F O'Gara    S Condon 《Applied microbiology》1990,56(7):2164-2169
The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.  相似文献   

7.
We constructed food-grade host-vector and integration systems for Streptococcus thermophilus by using a thymidylate synthase gene (thyA) as the selection marker. Two thyA genes, thyA(St) and thyA(Lb), were cloned from S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, respectively. Thymidine-requiring mutants of S. thermophilus were obtained after successive cultures in the presence of trimethoprim, and one of them, TM1-1, was used as the host. Food-grade vectors were constructed by using either thyA(St) or thyA(Lb) as the selection marker. Transformants of TM1-1 created by using these vectors were selected for thymidine autotrophy as efficiently as for erythromycin resistance. By using the host-vector system developed in this way, a foreign amylase gene (amyA) was expressed in TM1-1 and was also integrated into the chromosome by use of a temperature-sensitive integration vector constructed with thyA(Lb) as the selection marker via a double-crossover event. The results obtained show that thyA is an efficient and safe selection marker for S. thermophilus that is suitable for food applications.  相似文献   

8.
A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.  相似文献   

9.
10.
11.
Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.  相似文献   

12.
We describe the isolation and characterization of a series of 5-fluorodeoxyuridine (FdUrd)-resistant mouse 3T6 cell lines that overproduce thymidylate synthetase (TS) by up to 50-fold compared with the parental cells. The resistant cells were selected by growing 3T6 cells or a methotrexate-resistant 3T6 cell line (M50L3, isolated previously in our laboratory) in gradually increasing concentrations of FdUrd. Uridine and cytidine were included in the culture medium to reduce toxicity from metabolic products of FdUrd. Cells that were resistant to the drug by virtue of loss of thymidine kinase activity were eliminated by selection in medium containing hypoxanthine, methotrexate, and thymidine. M50L3 cells were found to adapt to FdUrd more readily than 3T6 cells. A number of clones were isolated that were able to grow in the presence of 3 microM (M50L3 derived) or 0.3 microM (3T6 derived) FdUrd. Several were found to overproduce TS by 10 to 50-fold compared with normal 3T6 cells. All were found to have thymidine kinase activity, although the enzyme level was significantly reduced in some clones. The overproduced TS was inactivated by 5-fluorodeoxyuridylic acid at the same concentration as the enzyme from 3T6 cells. TS was purified from the LU3-7 clone (50-fold overproducer) by affinity chromatography on methotrexate-polyacrylamide. The monomer molecular weight was about 38,000, which was the same as the molecular weight of the monomer in 3T6 cells. The overproduction trait was gradually lost (half-life, 3 weeks) when LU3-7 cells were grown in the absence of FdUrd. The overproducing cells will provide an abundant supply of TS and (very likely) its mRNA and may serve as a convenient model system for detailed studies of the regulation of TS gene expression during the cell cycle.  相似文献   

13.
Dihydrofolate reductase (the folA gene product) catalyzes the synthesis of tetrahydrofolate, a key methyl donor in many biosynthetic pathways. Loss of folA had been thought to be lethal to wild-type (thyA+) Escherichia coli. Viable folA-null derivatives of thyA+ E. coli were obtained, however, by recombining a folA deletion linked to a Kanr selectable marker into a lambda folA+ phage and using this phage to transduce cells to kanamycin resistance. folA-null strains were slow growing, formed small colonies, and were auxotrophic for thymidine, adenine, methionine, glycine, and pantothenate.  相似文献   

14.
克隆了大肠杆菌和霍乱弧菌胸腺嘧啶合成酶基因thyA ,并以pcDNA3质粒为基础 ,分别用两种来源的thyA基因替代其氨苄抗性基因Amp,构建了不含抗性基因 ,且可在thyA营养缺陷型大肠杆菌中基于染色体 质粒平衡致死系统稳定传代的真核表达载体。该载体可有效表达红色荧光蛋白报告基因。为核酸疫苗的制备提供一个无抗性的表达载体系统  相似文献   

15.
16.
H H el-Hajj  L Wang    B Weiss 《Journal of bacteriology》1992,174(13):4450-4456
The dut gene of Escherichia coli encodes deoxyuridine triphosphatase, an enzyme that prevents the incorporation of dUTP into DNA and that is needed in the de novo biosynthesis of thymidylate. We produced a conditionally lethal dut(Ts) mutation and isolated a phenotypic revertant that had a mutation in an unknown gene tentatively designated dus (for dut suppressor). The dus mutation restored the ability of the dut mutant to grow at 42 degrees C without restoring its enzymatic activity or thymidylate independence. A strain was constructed bearing, in addition to these mutations, ones affecting the following genes and their corresponding products: ung, which produces uracil-DNA N-glycosylase, a repair enzyme that removes uracil from DNA; deoA, which produces thymidine (deoxyuridine) phosphorylase, which would degrade exogenous deoxyuridine; and thyA, which produces thymidylate synthase. When grown at 42 degrees C in minimal medium containing deoxyuridine, the multiple mutant displayed a 93 to 96% substitution of uracil for thymine in new DNA. Growth stopped after the cellular DNA had increased 1.6- to 1.9-fold and the cell mass had increased 1.7- to 2.7-fold, suggesting a general failure of macromolecular biosynthesis. DNA hybridization confirmed that the uracil-containing DNA was chromosomal and that new rounds of initiation must have occurred during its synthesis.  相似文献   

17.
Genetically modified Lactococcus lactis secreting interleukin 10 provides a therapeutic approach for inflammatory bowel disease. However, the release of such genetically modified organisms through clinical use raises safety concerns. In an effort to address this problem, we replaced the thymidylate synthase gene thyA of L. lactis with a synthetic human IL10 gene. This thyA- hIL10+ L. lactis strain produced human IL-10 (hIL-10), and when deprived of thymidine or thymine, its viability dropped by several orders of magnitude, essentially preventing its accumulation in the environment. The biological containment system and the bacterium's capacity to secrete hIL-10 were validated in vivo in pigs. Our approach is a promising one for transgene containment because, in the unlikely event that the engineered L. lactis strain acquired an intact thyA gene from a donor such as L. lactis subsp. cremoris, the transgene would be eliminated from the genome.  相似文献   

18.
19.
20.
We have extended our previous study on the suppression of frameshift mutants by Escherichia coli thyA mutants by assaying suppression of 15 rIIB frameshift mutants of bacteriophage T4 on one of our suppressing thyA mutant strains. The majority of insertion mutants were suppressible, whereas none of the deletion mutants tested was suppressible. Frameshift suppression could be inhibited by adding thymidine to the assay medium, but was not affected by the presence of a restrictive rpsL mutation in the host strain. We suggest that the frameshift suppression event occurs at a nonsense codon generated by the frameshift mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号