共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical property calculations are presented for poly(A·U), poly[(A-U)·(A-U)], poly(G·C), and poly[(G-C)·(G-C)] in RNA, B-DNA, and C-DNA conformations. An all-order classical coupled oscillator polarizability theory was used, and an effective dielectric constant of 2 was assumed. The calculated CD spectra were found to be sensitive to both geometry and sequence. Agreement with the measured CD spectra of poly(A·U), poly(G·C), and poly(dG·dC) is very good. Calculations for other sequences and geometries are less satisfactory and are particularly poor for poly[(G-C)·(G-C)] in RNA geometry and poly(A·T) in B-DNA geometry. Attempts to improve agreement with measured spectra by varying monomer properties have been only partially successful for these calculations, but they illustrate the types of changes that may prove to be necessary. Calculations using other published X-ray coordinates for certain deoxypolynucleotides of simple sequence, some of which are quite different from B-DNA coordinates, did not result in better agreement with measured spectra. Finally, the dependence of the calculated CD on chain length is examined. Results show that non-nearest neighbor interactions can be important when runs of 3 or more identical base pairs appear in a given sequence. 相似文献
2.
Energetic and structural aspects of ethidium cation intercalation into DNA minihelices 总被引:6,自引:0,他引:6
The enthalpy ΔH for the intercalation of the ethidium cation (EC) into DNA minihelices can be decomposed into (1) an energy of conformational adjustment (i.e., the energy of minihelix extension and unwinding from the B-form to the intercalated form) and (2) EC minihelix intermolecular interactions. In the present study, we have focused our attention mainly on a decomposition of the energetic factors of the EC minihelix intermolecular interactions, while the essential features of the energy of conformational adjustment have been discussed in detail elsewhere by us. The structural features of the various resulting energy-minimized EC-intercalated complexes are compared with each other and the initial x-ray model structure. ΔH is estimated to be in the range of ?12.3 to ?24.0 kcal/mol. This theoretical estimate is qualitatively and quantitatively in agreement with a variety of available experimental data. The energy of conformational adjustment is an energetically unfavorable step, while the energetically favorable contribution of the EC minihelix intermolecular interactions is responsible for the overall favorable nature of the intercalation process involving the EC. On the other hand, the observed preference for intercalation into Pyr(3′–5′)Pur DNA sequences over their isomeric Pur(3′–5′)Pyr sequences is controlled by the energy of conformational adjustment and not by the EC minihelix intermolecular interaction contribution. No base-composition effect is expected at EC concentrations normally found at cellular conditions. Moreover, the structural features of the various EC-intercalated complexes are very similar regardless of minihelix base sequence or composition. These results compare favorably with available evidence. The nature of biologically preferred sites of EC binding with the minihelices is discussed. 相似文献
3.
The solution complexes of ethidium bromide with nine different deoxydinucleotides and the four self-complementary ribodinucleoside monophosphates as well as mixtures of complementary and noncomplementary deoxydinucleotides were studied as models for the binding of the drug to DNA and RNA. Ethidium bromide forms the strongest complexes with pdC-dG and CpG and shows a definite preference for interaction with pyrimidine–purine sequence isomers. Cooperativity is observed in the binding curves of the self-complementary deoxydinucleotides pdC-dG and pdG-dC as well as the ribodinucleoside monophosphates CpG and GpC, indicating the formation of a minihelix around ethidium bromide. The role of complementarity of the nucleotide bases was evident in the visible and circular dichroism spectra of mixtures of complementary and noncomplementary dinucleotides. Nuclear magnetic resonance measurements on an ethidium bromide complex with CpG provided evidence for the intercalation model for the binding of ethidium bromide to double-stranded nucleic acids. The results also suggest that ethidium bromide may bind to various sequences on DNA and RNA with significantly different binding constants. 相似文献
4.
Evidence for intercalation of chloroquine into DNA 总被引:5,自引:0,他引:5
5.
6.
A theoretical investigation on the sequence selective binding of adriamycin to double-stranded polynucleotides.
下载免费PDF全文

Theoretical computations are performed on the structural and energetical factors involved in the sequence selective binding of adriamycin (ADM) to five self-complementary double-stranded hexanucleotides. Among the two regularly alternating hexanucleotides d (TATATA)2 and d (CGCGCG)2, a stronger binding is predicted for the former. The strongest complex is computed, however, for the mixed hexanucleotide d (CGTACG)2, containing the intercalation site between two CG base pairs and an adjacent TA base pair. The overall sequence preference is the result of an intricate interplay of sequence preferences of the constituents in particular of daunosamine and the 9-OH substituent. Altogether, the selective base pair recognition by adriamycin cannot be defined in terms of the two base pairs implicated in the intercalation site alone but must be expressed in terms of a triplet of base pairs. 相似文献
7.
Melanie D Keppler Peter L James Stephen Neidle Tom Brown Keith R Fox 《European journal of biochemistry》2003,270(24):4982-4992
We have examined the ability of naphthylquinoline, a 2,7-disubstituted anthraquinone and BePI, a benzo[e]pyridoindole derivative, to stabilize parallel DNA triplexes of different base composition. Fluorescence melting studies, with both inter- and intramolecular triplexes, show that all three ligands stabilize triplexes that contain blocks of TAT triplets. Naphthylquinoline has no effect on triplexes formed with third strands composed of (TC)n or (CCT)n, but stabilizes triplexes that contain (TTC)n. In contrast, BePI slightly destabilizes the triplexes that are formed at (TC)n (CCT)n and (TTC)n. 2,7-Anthraquinone stabilizes (TC)n (CCT)n and (TTC)n, although it has the greatest effect on the latter. DNase I footprinting studies confirm that triplexes formed with (CCT)n are stabilized by the 2,7-disubstituted amidoanthraquinone but not by naphthylquinoline. Both ligands stabilize the triplex formed with (CCTT)n and neither affects the complex with (CT)n. We suggest that BePI and naphthylquinoline can only bind between adjacent TAT triplets, while the anthraquinone has a broader sequence of selectivity. These differences may be attributed to the presence (naphthylquinoline and BePI) or absence (anthraquinone) of a positive charge on the aromatic portion of the ligand, which prevents intercalation adjacent to C+GC triplets. The most stable structures are formed when the stacked rings (bases or ligand) alternate between charged and uncharged species. Triplexes containing alternating C+GC and TAT triplets are not stabilized by ligands as they would interrupt the alternating pattern of charged and uncharged residues. 相似文献
8.
We have previously observed that double-stranded DNA fragments containing a tract of the tandemly repeated sequence poly(CA). poly(TG) can associate in vitro to form stable complexes of low electrophoretic mobility, which are recognized with high specificity by proteins HMG1 and HMG2. The formation of such complexes has since been observed to depend on interactions of DNA with polypropylene surfaces, with the suggestion that the formation of low mobility complexes might be the result of strand dissociation followed by misaligned reassociation of the repetitive sequences. The data presented here show that at high ionic strength the interactions of DNA with polypropylene are sufficiently strong for DNA to remain bound to the polypropylene surface, which suggests that DNA might also be involved in interactions with hydrophobic molecules in vivo. Under such conditions, low-mobility complexes are found only in the material adsorbed to the polypropylene surface, and all DNA fragments are able to form low-mobility structures, whether or not they contain repetitive sequences. Preventing the separation of strands by ligating hairpin loop oligonucleotides at both ends of the fragments does not prevent the formation of low-mobility complexes. Our results suggest two different pathways for the formation of complexes. In the first, dissociation is followed by misaligned reassociation of repetitive sequences, yielding duplexes with single-stranded end regions that associate to form multimeric complexes. In the second, repetitive as well as nonrepetitive DNA molecules bound to polypropylene adopt a conformation with locally unwound regions, which allows interactions between neighboring duplexes adsorbed on the surface, resulting in the formation of low-mobility complexes. 相似文献
9.
The large-scale flexibility of DNA and the intercalation of actinomycin D have been studied by computer simulation using molecular dynamics. The stretching and unwinding of B and Z forms of DNA and intercalation in B-DNA were examined through molecular dynamics simulations, and the energetics of transitions were calculated by the conformational energy minimization method. The principal results of this research are as follows: (1) A dynamic conformational pathway is presented for longitudinal stretching and unwinding of the double helix to open an intercalation site. (2) Large-scale transitions are possible in both B and Z forms of DNA through a conformationally allowed kinetic pathway. (3) The stretching and untwisting of a 5′(CG)3′ step is energetically more favorable than for a GC step in B-DNA. (4) The formation of an adjacent second cavity in B-DNA requires larger energy than the formation of the first cavity, affirming the neighbor-exclusion principle of intercalation. (5) Docking an intercalated actinomycin D in the stretched structure is shown to be geometrically and energetically feasible. 相似文献
10.
Supercoiling-dependent sequence specificity of mammalian DNA methyltransferase. 总被引:4,自引:3,他引:4
下载免费PDF全文

T Bestor 《Nucleic acids research》1987,15(9):3835-3843
Negative supercoiling of substrate DNA dramatically alters the in vitro sequence specificity of mammalian DNA methyltransferase (DNA MeTase). This result suggests that in vivo site selection by DNA MeTase could be regulated by conformational information in the form of alternative secondary structures induced in DNA by local supercoiling or by the binding of specific nuclear proteins. DNA in the left-handed Z-form is shown not to be a substrate for mammalian DNA MeTase. The sensitivity of DNA MeTase to DNA structure may also make it useful as a probe for sequences which undergo supercoiling-dependent structural transitions in vitro. 相似文献
11.
The relative quantity of 5-methyl cytosine in vertebrate nuclear DNA shows species and tissue variation. To determine whether this is due to the action of species or cell specific DNA methylases the sequence specificity of the 5-methyl cytosine distribution in the DNA of a range of cells has been partially characterised. The pattern of methylation was found to be remarkably constant and indicates stringent evolutionary conservation of the characteristics of vertebrate DNA methylation. 相似文献
12.
We examined structural properties of poly d(C4A2).d(T2G4), the telomeric DNA sequence of the ciliated protozoan Tetrahymena. Under conditions of high negative supercoiling, poly d(C4A2).d(T2G4) inserted in a circular plasmid vector was preferentially sensitive to digestion with S1 nuclease. Only the C4A2 strand was sensitive to first-strand S1 cutting, with a markedly skewed pattern of hypersensitive sites in tracts of either 46 or 7 tandem repeats. Linear poly d(C4A2).(T2G4) showed no preferential S1 sensitivity, no circular dichroism spectra indicative of a Z-DNA conformation, no unusual Tm, and no unusual migration in polyacrylamide gel electrophoresis. The S1 nuclease sensitivity properties are consistent with a model proposed previously for supercoiled poly d(CT).d(AG) (Pulleyblank et al., Cell 42:271-280, 1985), consisting of a double-stranded, protonated, right-handed underwound helix. We propose that this structure is shared by related telomeric sequences and may play a role in their biological recognition. 相似文献
13.
The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary. 相似文献
14.
A structural basis for S1 nuclease sensitivity of double-stranded DNA 总被引:58,自引:0,他引:58
A protonated form of a cloned simple repeating DNA sequence d(TC)n X d(GA) is detectable in equilibrium with the usual Watson-Crick base-paired form at pHs up to 7. This form is anomalously sensitive to a variety of single-strand-specific endonucleases. The observed pH dependent protection of N-7 of dG residues within the insert suggests that these residues are either Hoogsteen or reverse Hoogsteen base-paired to protonated dC residues of the polypyrimidine strand. A structure in which dA:dT Watson-Crick base pairs alternate with Hoogsteen syndG:dCH+ pairs appears to be the most stereochemically acceptable structure consistent with the chemical properties of this protonated DNA. Protonated d(TC)n X d(GA)n interacts with an anti-Z DNA antibody raised against brominated d(GC)n X d(GC)n. 相似文献
15.
Free energy calculation on base specificity of drug--DNA interactions: application to daunomycin and acridine intercalation into DNA 总被引:2,自引:0,他引:2
We present the results of free energy perturbation/molecular dynamics studies on B-DNA.daunomycin and B-DNA.9-aminoacridine complexes as well as on B-DNA itself in order to calculate the free energy differences between complexes having different base pair sequences. The results generally reproduce the trends observed experimentally, i.e., preferences of acridine and daunomycin to bind to a specific base sequence in the DNA. This is encouraging, given the simplicity of the molecular mechanical/dynamical model in which solvent is not explicitly included. 相似文献
16.
Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA. 总被引:4,自引:2,他引:4
下载免费PDF全文

Strand displacement binding kinetics of cationic pseudoisocytosine-containing linked homopyrimidine peptide nucleic acids (bis-PNAs) to fully matched and singly mismatched decapurine targets in double-stranded DNA (dsDNA) are reported. PNA-dsDNA complex formation was monitored by gel mobility shift assay and pseudo-first order kinetics of binding was obeyed in all cases studied. The kinetic specificity of PNA binding to dsDNA, defined as the ratio of the initial rates of binding to matched and mismatched targets, increases with increasing ionic strength, whereas the apparent rate constant for bis-PNA-dsDNA complex formation decreases exponentially. Surprisingly, at very low ionic strength two equally charged bis-PNAs which have the same sequence of nucleobases but different linkers and consequently different locations of three positive charges differ in their specificity of binding by one order of magnitude. Under appropriate experimental conditions the kinetic specificity for bis-PNA targeting of dsDNA is as high as 300. Thus multiply charged cationic bis-PNAs containing pseudoisocytosines (J bases) in the Hoogsteen strand combined with enhanced binding affinity also exhibit very high sequence specificity, thereby making such reagents extremely efficient for sequence-specific targeting of duplex DNA. 相似文献
17.
The sequence specificity of an extensively purified DNA methylase preparation from Krebs II mouse ascites cells has been examined. The enzyme appears to be highly sequence dependent. Moreover the sequence distribution of cytosine residues that are methylated, bears a very close resemblance to the sequence distribution of 5'-methyl cytosine found in vivo in a wide range of vertebrate cells and is consistent with methylation of cytosines in the sequence R-Yn-C-R. 相似文献
18.
Despite its large size (200-2400 kilobase pairs), the mitochondrial genome of angiosperms does not encode the minimal set of tRNAs required to support mitochondrial protein synthesis. Here we report the identification of cytosolic-like tRNAs in wheat mitochondria using a method involving quantitative hybridization to distinguish among three tRNA classes: (i) those encoded by mitochondrial DNA (mtDNA) and localized in mitochondria, (ii) those encoded by nuclear DNA and located in the cytosol, and (iii) those encoded by nuclear DNA and found in both the cytosol and mitochondria. The latter class comprises tRNA species that are considered to be imported into mitochondria to compensate for the deficiency of mtDNA-encoded tRNAs. In a comprehensive survey of the wheat mitochondrial tRNA population, we identified 14 such imported tRNAs, the structural characterization of which is presented here. These imported tRNAs complement 16 mtDNA-encoded tRNAs, for a total of at least 30 distinct tRNA species in wheat mitochondria. Considering differences in the set of mtDNA-encoded and imported tRNAs in the mitochondria of various land plants, the import system must be able to adapt relatively rapidly over evolutionary time with regard to the particular cytosolic-like tRNAs that are brought into mitochondria. 相似文献
19.
The attachment of the hemagglutinin protein of the H1N1 subtype of the pandemic influenza A virus to the sialic acid receptor Sia(α2-6)Gal has contributed to the ability of the virus to replicate in the human body and transmit among humans. In view of the pandemic caused by the replication and transmission of the H1N1 virus, more studies on the specificity of hemagglutinin towards sialic acid and how it affects the replication and transmission ability of this virus among humans are needed. In this study, we have applied sequence, structural and functional analyses to the hemagglutinin protein of the pandemic H1N1 virus, with the aim of identifying amino acid mutation patterns that affect its specificity to sialic acid. We have also employed a molecular docking method to evaluate the complex formed between hemagglutinin protein and the sialic acid receptor. Based on our results, we suggest two possible mutation patterns, namely (1) positions 190 and 225 from glutamic acid and glycine to aspartic acid (E190D in A/Brevig Mission/1/18 (H1N1), A/New York/1/18(H1N1) and A/South Carolina/1/1918(H1N1) and G225D in A/South Carolina/1/1918(H1N1), A/South Carolina/1/1918(H1N1), and A/Puerto Rico/8/34(H1N1)), and (2) positions 226 and 228 from glutamine and glycine to leucine and serine, respectively (Q226L and G228S in A/Guiyang/1/1957(H2N2), A/Kayano/57(H2N2), A/Aichi/2/1968(H3N2), A/Hong Kong/1/1968(H3N2) and A/Memphis/1/68(H3N2)) that can potentially contribute to the specificity of hemagglutinin to Sia(α2-6)Gal, thereby enabling the replication and transmission of virus within and among humans. 相似文献
20.
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites. 相似文献