首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation of the high affinity receptor for IgE (FcepsilonRI) induces activation of mast cells. In this study we show that upon low intensity stimulation of FcepsilonRI with monomeric IgE, IgE plus anti-IgE, or IgE plus low Ag, Lyn (a Src family kinase) positively regulates degranulation, cytokine production, and survival, whereas Lyn works as a negative regulator of high intensity stimulation with IgE plus high Ag. Low intensity stimulation suppressed Lyn kinase activity and its association with FcepsilonRI beta subunit, whereas high intensity stimulation enhanced Lyn activity and its association with FcepsilonRI beta. The latter induced much higher levels of FcepsilonRI beta phosphorylation and Syk activity than the former. Downstream positive signaling molecules, such as Akt and p38, were positively and negatively regulated by Lyn upon low and high intensity stimulations, respectively. In contrast, the negative regulators, SHIP and Src homology 2 domain-containing protein tyrosine phosphatase-1, interacted with FcepsilonRI beta, and their phosphorylation was controlled by Lyn. Therefore, we conclude that Lyn-mediated positive vs negative regulation depends on the intensity of the stimuli. Studies of mutant FcepsilonRI beta showed that FcepsilonRI beta subunit-ITAM (ITAM motif) regulates degranulation and cytokine production positively and negatively depending on the intensity of FcepsilonRI stimulation. Furthermore, Lyn-mediated negative regulation was shown to be exerted via the FcepsilonRI beta-ITAM.  相似文献   

2.
The first step in immunoreceptor signaling is represented by ligand-dependent receptor aggregation, followed by receptor phosphorylation mediated by tyrosine kinases of the Src family. Recently, sphingolipid- and cholesterol-rich plasma membrane microdomains, called lipid rafts, have been identified and proposed to function as platforms where signal transduction molecules may interact with the aggregated immunoreceptors. Here we show that aggregation of the receptors with high affinity for immunoglobulin E (FcepsilonRI) in mast cells is accompanied by a co-redistribution of the Src family kinase Lyn. The co-redistribution requires Lyn dual fatty acylation, Src homology 2 (SH2) and/or SH3 domains, and Lyn kinase activity, in cis or in trans. Palmitoylation site-mutated Lyn, which is anchored to the plasma membrane but exhibits reduced sublocalization into lipid rafts, initiates the tyrosine phosphorylation of FcepsilonRI subunits, Syk protein tyrosine kinase, and the linker for activation of T cells, along with an increase in the concentration of intracellular Ca(2+). However, Lyn mutated in both the palmitoylation and myristoylation sites does not anchor to the plasma membrane and is incapable of initiating FcepsilonRI phosphorylation and early signaling events. These data, together with our finding that a constitutively tyrosine-phosphorylated FcepsilonRI does not exhibit an increased association with lipid rafts, suggest that FcepsilonRI phosphorylation and early activation events can be initiated outside of lipid rafts.  相似文献   

3.
The mast cell function-associated Ag (MAFA) is a type II membrane glycoprotein originally found on the plasma membrane of rat mucosal-type mast cells (RBL-2H3 line). A C-type lectin domain and an immunoreceptor tyrosine-based inhibitory motif (ITIM) are located in the extracellular and intracellular domains of MAFA, respectively. MAFA clustering has previously been shown to suppress the secretory response of these cells to the FcepsilonRI stimulus. Here we show that the tyrosine of the ITIM undergoes phosphorylation, on MAFA clustering, that is markedly enhanced on pervanadate treatment of the cells. Furthermore, the Src homology 3 domain of the protein tyrosine kinase Lyn binds directly to a peptide containing nonphosphorylated MAFA ITIM and PAAP motif. Results of both in vitro and in vivo experiments suggest that Lyn is probably responsible for this ITIM phosphorylation, which increases the Src homology domain 2 (SH2) affinity of Lyn for the peptide. In vitro measurements established that tyrosine-phosphorylated MAFA ITIM peptides also bind the SH2 domains of inositol 5'-phosphatase (SHIP) as well as protein tyrosine phosphatase-2. However, the former single domain is bound 8-fold stronger than both of the latter. Further support for the role of SHIP in the action of MAFA stems from in vivo experiments in which tyrosine-phosphorylated MAFA was found to bind primarily SHIP. In RBL-2H3 cells overexpressing wild-type SHIP, MAFA clustering causes markedly stronger inhibition of the secretory response than in control cells expressing normal SHIP levels or cells overexpressing either wild-type protein tyrosine phosphatase-2 or its dominant negative form. In contrast, on overexpression of the SH2 domain of SHIP, the inhibitory action of MAFA is essentially abolished. Taken together, these results suggest that SHIP is the primary enzyme responsible for mediating the inhibition by MAFA of RBL-2H3 cell response to the FcepsilonRI stimulus.  相似文献   

4.
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.  相似文献   

5.
Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.  相似文献   

6.
A Hirao  I Hamaguchi  T Suda    N Yamaguchi 《The EMBO journal》1997,16(9):2342-2351
Chk/Hyl is a recently isolated non-receptor tyrosine kinase with greatest homology to a ubiquitous negative regulator of Src family kinases, Csk. To understand the significance of co-expression of Chk and Csk in platelets, we examined the subcellular localization of each protein. Chk, but not Csk, was completely translocated from the Triton X-100-soluble to the Triton X-100-insoluble cytoskeletal fraction within 10 s of thrombin stimulation. Chk and Lyn, but not Csk and c-Src, co-fractionated in the higher density lysate fractions of resting platelets, with Chk being found to localize close to CD36 (membrane glycoprotein IV)-anchored Lyn. The kinase activity of co-fractionated Lyn was suppressed 3-fold. In vitro phosphorylation assays showed that Chk suppressed Lyn activity by phosphorylating its C-terminal negative regulatory tyrosine. Upon stimulation of platelets with thrombin, the rapid and complete translocation of Chk away from Lyn caused concomitant activation of Lyn. This activation was accompanied by dephosphorylation of Lyn at its C-terminal negative regulatory tyrosine in cooperation with a protein tyrosine phosphatase. These results suggest that Chk, but not Csk, may function as a translocation-controlled negative regulator of CD36-anchored Lyn in thrombin-induced platelet activation.  相似文献   

7.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

8.
The E3 ubiquitin ligase Cbl has been implicated in intracellular signaling pathways induced by the engagement of the B cell antigen receptor (BCR) as a negative regulator. Here we showed that Cbl deficiency results in a reduction of B cell proliferation. Cbl-/- B cells show impaired tyrosine phosphorylation, reduced Erk activation, and attenuated calcium mobilization in response to BCR engagement. The phosphorylation of Syk and Btk is also down-modulated. Interestingly, Cbl-/- B cells display enhanced BCR-induced phosphorylation of CD19 and its association with phosphatidylinositol 3-kinase. Importantly, Lyn kinase activity is up-regulated in Cbl-/- B cells, which correlates inversely with the Cbl-mediated ubiquitination of Lyn. Because Lyn has both negative and positive roles in B cells, our results suggested that Cbl differentially modulates the BCR-mediated signaling pathways through targeting Lyn ubiquitination, which affects B cell development and activation.  相似文献   

9.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

10.
Toll-like receptors (TLRs) recognize molecular patterns preferentially expressed by pathogens. In endosomes, TLR9 is activated by unmethylated bacterial DNA, resulting in proinflammatory cytokine secretion via the adaptor protein MyD88. We demonstrate that CpG oligonucleotides activate a TLR9-independent pathway initiated by two Src family kinases, Hck and Lyn, which trigger a tyrosine phosphorylation–mediated signaling cascade. This cascade induces actin cytoskeleton reorganization, resulting in cell spreading, adhesion, and motility. CpG-induced actin polymerization originates at the plasma membrane, rather than in endosomes. Chloroquine, an inhibitor of CpG-triggered cytokine secretion, blocked TLR9/MyD88-dependent cytokine secretion as expected but failed to inhibit CpG-induced Src family kinase activation and its dependent cellular responses. Knock down of Src family kinase expression or the use of specific kinase inhibitors blocked MyD88-dependent signaling and cytokine secretion, providing evidence that tyrosine phosphorylation is both CpG induced and an upstream requirement for the engagement of TLR9. The Src family pathway intersects the TLR9–MyD88 pathway by promoting the tyrosine phosphorylation of TLR9 and the recruitment of Syk to this receptor.  相似文献   

11.
The Csk Homologous Kinase (CHK) has been shown to have an enzymatic activity similar to the tyrosine kinase Csk in that it down-regulates Src family kinase activity by causing phosphorylation of the Src C-terminal tyrosine residue. In megakaryocytic Mo7e cells, CHK associates with a specific phosphotyrosine juxtamembrane sequence of the SCF/KL-activated c-Kit receptor. Here, we show that in Mo7e cells, the major Src family kinase activity is p53/56(Lyn). Studies using immobilized c-Kit phosphopeptides show that Lyn is able to specifically associate with the tyrosine-phosphorylated juxtamembrane 568Y*VY*IDPT sequence of c-Kit which has previously been shown to associate with CHK. In cells over-expressing CHK by means of a recombinant vaccinia virus, we observed an elimination of the SCF/KL-stimulated Lyn kinase peak of activity observed at 2-5 minutes in cells infected with the helper T7-expressing vaccinia virus by itself. Examination of total tyrosine phosphorylation by Western blotting showed that over-expression of CHK resulted in a reduction in the levels of tyrosine phosphorylations in the range of 50-60 kDa, but had no apparent effect on c-Kit autophosphorylation. Taken together, these findings show that CHK is able to down-regulate SCF/KL-stimulated Lyn activity in megakaryocytes.  相似文献   

12.
Regulation of mast cell degranulation is dependent on the subtle interplay of cellular signaling proteins. The Src homology 2 (SH2) domain-containing inositol-5'-phosphatase (SHIP), which acts as the gatekeeper of degranulation, binds via both its SH2 domain and its phosphorylated NPXY motifs to the adapter protein Shc via the latter's phosphorylated tyrosines and phosphotyrosine-binding domain, respectively. This theoretically leaves Shc's SH2 domain available to bind proteins, which might be part of the SHIP/Shc complex. In a search for such proteins, protein kinase C-delta (PKC-delta) was found to coprecipitate in mast cells with Shc and to interact with Shc's SH2 domain following antigen or pervanadate stimulation. Phosphorylation of PKC-delta's Y(332), most likely by Lyn, was found to be responsible for PKC-delta's binding to Shc's SH2 domain. Using PKC-delta(-/-) bone marrow-derived mast cells (BMMCs), we found that the antigen-induced tyrosine phosphorylation of Shc was similar to that in wild-type (WT) BMMCs while that of SHIP was significantly increased. Moreover, increased translocation of PKC-delta to the membrane, as well as phosphorylation at T505, was observed in SHIP(-/-) BMMCs, demonstrating that while PKC-delta regulates SHIP phosphorylation, SHIP regulates PKC-delta localization and activation. Interestingly, stimulation of PKC-delta(-/-) BMMCs with suboptimal doses of antigen yielded a more sustained calcium mobilization and a significantly higher level of degranulation than that of WT cells. Altogether, our data suggest that PKC-delta is a negative regulator of antigen-induced mast cell degranulation.  相似文献   

13.
14.
Lyn, an Src-type tyrosine kinase, is associated with the interleukin (IL)-5 receptor in eosinophils. The mechanism of its activation is unknown. Through yeast two-hybrid screening we have cloned and characterized a new signaling molecule, Unc119, that associates with IL-5Ralpha and Src family tyrosine kinases. Unc119 induces the catalytic activity of these kinases through interaction with Src homology 2 and 3 domains. IL-5 stimulation of eosinophils increases Unc119 association with Lyn and induces its catalytic activity. Lyn is important for eosinophil survival. Eosinophils that are transduced with Unc119 have increased Lyn activity and demonstrate prolonged survival in the absence of IL-5. Inhibition of Unc119 down-regulates eosinophil survival. To our knowledge Unc119 is the first receptor-associated activator of Src family tyrosine kinases.  相似文献   

15.
Mast cell activation via FcεRI involves activation of the Src family kinases (SFKs) Lyn, Fyn, and Hck that positively or, in the case of Lyn, negatively regulate cellular responses. Little is known of upstream activators of these SFKs in FcεRI-dependent signaling. We investigated the role of receptor protein tyrosine phosphatase (PTP)α, a well-known activator of SFKs in diverse signaling systems, FcεRI-mediated mast cell activation, and IgE-dependent allergic responses in mice. PTPα(-/-) bone marrow-derived mast cells hyperdegranulate and exhibit increased cytokine and cysteinyl leukotriene secretion, and PTPα(-/-) mice display enhanced IgE-dependent anaphylaxis. At or proximal to FcεRI, PTPα(-/-) cells have reduced IgE-dependent activation of Lyn and Fyn, as well as reduced FcεRI and SHIP phosphorylation. In contrast, Hck and Syk activation is enhanced. Syk hyperactivation correlated with its increased phosphorylation at positive regulatory sites and defective phosphorylation at a negative regulatory site. Distal to FcεRI, we observed increased activation of PI3K and MAPK pathways. These findings demonstrate that PTPα activates the FcεRI-coupled kinases Lyn and Fyn and suppresses Hck activity. Furthermore, the findings indicate that hyperactivation of PTPα(-/-) mast cells and enhanced IgE-dependent allergic responses of PTPα(-/-) mice are due to the ablated function of PTPα as a critical regulator of Lyn negative signaling.  相似文献   

16.
The hematopoietic lineage cell-specific protein HS1 was shown to undergo a process of sequential phosphorylation both in vitro and in vivo, which is synergistically mediated by Syk and Src family protein-tyrosine kinases and essential for B cell antigen receptor-mediated apoptosis. We have now identified tyrosine 222 as the HS1 residue phosphorylated by the Src family protein kinases c-Fgr and Lyn, and we show that a truncated form of HS1 (HS1-208-401) lacking the N-terminal putative DNA binding region and the C-terminal Src homology 3 (SH3) domain is still able to undergo all the steps of sequential phosphorylation as efficiently as full-length HS1. We also show that a stable association of phospho-HS1 with c-Fgr through its SH2 domain requires previous autophosphorylation of the kinase and is prevented by subsequent phosphorylation of Tyr-222. Kinetic studies with HS1 and its truncated forms previously phosphorylated by Syk and with a peptide substrate reproducing the sequence around tyrosine 222 support the view that efficient phosphorylation of HS1 by Src family protein kinases entirely relies on TyrP-SH2 domain interaction with negligible, if any, contribution of local specificity determinants. Our data indicate that the proline-rich region of HS1 bordered by tyrosyl residues affected by Syk and Src family kinases represents a functional domain designed to undergo a process of sequential phosphorylation.  相似文献   

17.
The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is implicated in the maintenance of viral latency and appears to function in part by inhibiting B-cell receptor (BCR) signaling. The N-terminal cytoplasmic region of LMP2A has multiple tyrosine residues that upon phosphorylation bind the SH2 domains of the Syk tyrosine kinase and the Src family kinase Lyn. The LMP2A N-terminal region also has two conserved PPPPY motifs. Here we show that the PPPPY motifs of LMP2A bind multiple WW domains of E3 protein-ubiquitin ligases of the Nedd4 family, including AIP4 and KIAA0439, and demonstrate that AIP4 and KIAA0439 form physiological complexes with LMP2A in EBV-positive B cells. In addition to a C2 domain and four WW domains, these proteins have a C-terminal Hect catalytic domain implicated in the ubiquitination of target proteins. LMP2A enhances Lyn and Syk ubiquitination in vivo in a fashion that depends on the activity of Nedd4 family members and correlates with destabilization of the Lyn tyrosine kinase. These results suggest that LMP2A serves as a molecular scaffold to recruit both B-cell tyrosine kinases and C2/WW/Hect domain E3 protein-ubiquitin ligases. This may promote Lyn and Syk ubiquitination in a fashion that contributes to a block in B-cell signaling. LMP2A may potentiate a normal mechanism by which Nedd4 family E3 enzymes regulate B-cell signaling.  相似文献   

18.
Tyrosine phosphorylation of Shc in response to B cell Ag receptor (BCR) engagement creates binding sites for the Src homology 2 (SH2) domain of Grb2. This facilitates the recruitment of both Grb2. Sos complexes and Grb2. SHIP complexes to the plasma membrane where Sos can activate Ras and SH2 domain-containing inositol phosphatase (SHIP) can dephosphorylate phosphatidylinositol 3,4,5-trisphosphate. Given the importance of Shc phosphorylation, we investigated the mechanism by which the BCR stimulates this response. We found that both the SH2 domain and phosphotyrosine-binding (PTB) domain of Shc are important for BCR-induced tyrosine phosphorylation of Shc and the subsequent binding of Grb2 to Shc. The unexpected finding that the PTB domain of Shc is required for Shc phosphorylation was investigated further. Because the major ligand for the Shc PTB domain is SHIP, we asked whether the interaction of Shc with SHIP was required for BCR-induced tyrosine phosphorylation of Shc. Using SHIP-deficient DT40 cells, we show that SHIP is necessary for the BCR to induce significant levels of Shc tyrosine phosphorylation. BCR-induced tyrosine phosphorylation of Shc could be restored in the these cells by expressing wild-type SHIP but not by expressing a mutant form of SHIP that cannot bind to Shc. This suggests that BCR-induced tyrosine phosphorylation of Shc may depend on the binding of SHIP to the Shc PTB domain. Thus, we have described a novel role for SHIP in BCR signaling, promoting the tyrosine phosphorylation of Shc.  相似文献   

19.
Previous studies indicate that STAT5 expression is required for mast cell development, survival, and IgE-mediated function. STAT5 tyrosine phosphorylation is swiftly and transiently induced by activation of the high affinity IgE receptor, FcεRI. However, the mechanism for this mode of activation remains unknown. In this study we observed that STAT5 co-localizes with FcεRI in antigen-stimulated mast cells. This localization was supported by cholesterol depletion of membranes, which ablated STAT5 tyrosine phosphorylation. Through the use of various pharmacological inhibitors and murine knock-out models, we found that IgE-mediated STAT5 activation is dependent upon Fyn kinase, independent of Syk, PI3K, Akt, Bruton's tyrosine kinase, and JAK2, and enhanced in the context of Lyn kinase deficiency. STAT5 immunoprecipitation revealed that unphosphorylated protein preassociates with Fyn and that this association diminishes significantly during mast cell activation. SHP-1 tyrosine phosphatase deficiency modestly enhanced STAT5 phosphorylation. This effect was more apparent in the absence of Gab2, a scaffolding protein that docks with multiple negative regulators, including SHP-1, SHP-2, and Lyn. Targeting of STAT5A or B with specific siRNA pools revealed that IgE-mediated mast cell cytokine production is selectively dependent upon the STAT5B isoform. Altogether, these data implicate Fyn as the major positive mediator of STAT5 after FcεRI engagement and demonstrate importantly distinct roles for STAT5A and STAT5B in mast cell function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号