首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k (cat)/K (m) values at pH 7.0 and 40°C. Maximum proteolytic activity (59?U mL(-1)) was achieved after 48?hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca(2+) and Mg(2+), and inhibited by Cu(2+), Zn(2+), Cd(2+), and Fe(2+.).  相似文献   

3.
Aims:  The study of proteolytic activity and examination of proteinase gene region organization in proteolytically active Lactobacillus plantarum strains from different natural sources.
Methods and Results:  A set of 37 lactobacilli was distinguished by using multiplex PCR assay. Results showed that 34 strains were Lact. plantarum and three of them were Lact. paraplantarum . The examination of proteolytic activity revealed that 28 Lact.   plantarum and two Lact.   paraplantarum hydrolyse β-casein. Further analyses of all proteolytically active Lact. plantarum with primers specific for different types of CEPs demonstrated that strain BGSJ3–18 has prtP catalytic domain as well as prtP – prtM intergenic region showing more than 95% sequence identity with the same regions present in Lact. paracasei , Lact. casei and L. lactis . No presence of prtB , prtH or prtR proteinase genes was detected in any of tested Lact. plantarum strains.
Conclusions:  One out of 28 analysed Lact. plantarum strains harbours the prtP -like gene. The other proteolytically active Lact. plantarum probably possesses a different type of extracellular proteinase(s).
Significance and Impact of the Study:  It is the first report about the presence of the prtP –like gene in Lact. plantarum , which illustrates the mobility of this gene and its presence in different species.  相似文献   

4.
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3' degenerate core based on four highly conserved amino acids and a longer 5' consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS(-)) and EPS-producing (EPS(+)) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS(+) bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS(+) strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.  相似文献   

5.
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k cat/K m values at pH 7.0 and 40°C. Maximum proteolytic activity (59 U mL?1) was achieved after 48 hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca2+ and Mg2+, and inhibited by Cu2+, Zn2+, Cd2+, and Fe2+.  相似文献   

6.
Lactobacilli isolated from different natural sources were screened for the presence of cell envelope-associated proteinases (Prt+ strains). Among them 17 of 75 tested isolates were Prt+. All Prt+ strains were producers of a serine-type proteinase, since their proteolytic activity was inhibited by phenylmethylsulfonyl fluoride. Most of the natural isolates of mesophilic lactobacilli degraded only β-casein such as Lactobacillus paracasei subsp. paracasei strains BGLI17 and BGLI18 and Lact. rhamnosus BGEN1. Only Lact. divergens BG742 cleaved all three, α-, β- and κ-caseins, even in the presence of Ca2+ ions. Total DNA isolated from Lact. paracasei subsp. paracasei strains BGLI17 and BGLI18 hybridized to the lactococcal proteinase gene probes originated from Lactococcus lactis subsp. cremoris Wg2. Hybridization could not be linked to the plasmid DNA, and pulse-field gel electrophoresis analysis suggested that the proteinase genes of these two strains are most probably chromosomally located.  相似文献   

7.
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.  相似文献   

8.
不同来源鼠李糖乳杆菌的随机扩增多态DNA分析   总被引:1,自引:0,他引:1  
[目的]建立鼠李糖乳杆菌(Lactobacillus rhamnosus,Lr)菌株之间的分子鉴别方法并分析不同分离株之间的遗传多样性.[方法]从56份采集自中国新疆和田和广西巴马瑶族自治县的长寿老人粪便样本中分离得到的乳酸菌中,经生理生化分析和API 50CHL试验条鉴定,获得10株Lr.对10株Lr分离株和1株Lr标准株ATCC7469进行了随机扩增多态DNA分析,从50条随机引物中筛选到5条在菌株水平上具有鉴别力的引物P14、OPG28、OPG25、P7和P4并建立和优化了Lr菌株RAPD指纹图谱扩增方法.根据RAPD结果计算菌株间的遗传相似系数并进行聚类分析.[结果]获得了清晰稳定的DNA指纹图谱,扩增产物大小在100~2000bp之间,菌株间呈现显著的DNA多态性,不同来源的Lr分离株的遗传相似系数在0.581~0.935之间,在相似系数0.80水平上可以将11株Lr菌株分为5个类群,其中分离自新疆和田的Lr菌株归在类群B和类群C,而分离自广西巴马瑶族自治县的Lr菌株归在类群D和类群E.[结论]应用RAPD方法对Lr菌株进行分子鉴别是可行的,不同来源的Lr之间存在着较大的种内遗传多态性和不同的亲缘关系.  相似文献   

9.
D. FIRA, M. KOJIC, A. BANINA, I. SPASOJEVIC, I. STRAHINIC AND L. TOPISIROVIC. 2001 . The proteolytic activities of two natural isolates of thermophilic lactobacilli, Lactobacillus acidophilus BGRA43 and Lact. delbrueckii BGPF1, and Lact. acidophilus CH2 (Chr. Hansen's strain) and Lact. acidophilus V74 (Visby's strain), were compared. Results revealed that optimal pH for all four proteinases is 6·5, whereas temperature optimum varied among proteinases. Determination of caseinolytic activity done under optimal conditions for each strain revealed that the CH2 and V74 proteinases completely hydrolysed both αS1-casein and β-casein, showing very low activity towards κ-casein. The BGPF1 proteinase completely hydrolysed only β-casein. The BGRA43 proteinase completely hydrolysed all three casein fractions. The proteolytic activities of whole cells were inhibited by serine proteinase inhibitors, suggesting that all four strains produce serine proteinases. DNA–DNA hybridization and PCR analysis showed that BGPF1 contains the prtB -like proteinase gene. Characterized thermophilic strains BGPF1 and BGRA43 were successfully used as starter cultures for production of yoghurt and acidophilus milk, respectively.  相似文献   

10.
The proteolytic activities of two natural isolates of thermophilic lactobacilli, Lactobacillus acidophilus BGRA43 and Lact. delbrueckii BGPF1, and Lact. acidophilus CH2 (Chr. Hansen's strain) and Lact. acidophilus V74 (Visby's strain), were compared. Results revealed that optimal pH for all four proteinases is 6.5, whereas temperature optimum varied among proteinases. Determination of caseinolytic activity done under optimal conditions for each strain revealed that the CH2 and V74 proteinases completely hydrolysed both alphaS1-casein and beta-casein, showing very low activity towards kappa-casein. The BGPF1 proteinase completely hydrolysed only beta-casein. The BGRA43 proteinase completely hydrolysed all three casein fractions. The proteolytic activities of whole cells were inhibited by serine proteinase inhibitors, suggesting that all four strains produce serine proteinases. DNA-DNA hybridization and PCR analysis showed that BGPF1 contains the prtB-like proteinase gene. Characterized thermophilic strains BGPF1 and BGRA43 were successfully used as starter cultures for production of yoghurt and acidophilus milk, respectively.  相似文献   

11.
Lactobacillus casei, Lact. paracasei and Lact. rhamnosus form a closely related taxonomic group within the heterofermentative lactobacilli. These three species are difficult to differentiate using traditional fermentation profiles. We have developed polymerase chain reaction primers which are specific for each of these species based on differences in the V1 region of the 16S rRNA gene. Sixty-three Lactobacillus isolates from cheese were identified using these primers. The 12 Lact. rhamnosus and 51 Lact. paracasei identified in this way were also differentiated using a randomly amplified polymorphic DNA (RAPD) primer.  相似文献   

12.
13.
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.  相似文献   

14.
Species taxonomy within the Lactobacillus casei group of bacteria has been unsettled. With the goal of helping clarify the taxonomy of these bacteria, we investigated the first 3 variable regions of the 16S rRNA gene, the 16S-23S rRNA interspacer region, and one third of the chaperonin 60 gene for Lactobacillus isolates originally designated as L. casei, L. paracasei, L. rhamnosus, and L. zeae. For each genetic region, a phylogenetic tree was created and signature sequence analysis was done. As well, phenotypic analysis of the various strains was performed by immunoblotting. Both sequence signature analysis and immunoblotting gave immediate identification of L. casei, L. rhamnosus, and L. zeae isolates. These results corroborate and extend previous findings concerning these lactobacilli; therefore, we strongly endorse recent proposals for revised nomenclature. Specifically, isolate ATCC 393 is appropriately rejected as the L. casei type strain because of grouping with isolates identified as L. zeae. As well, because all other L. casei isolates, including the proposed neotype isolate ATCC 334, grouped together with isolates designated L. paracasei, we support the use of the single species L. casei and rejection of the name L. paracasei.  相似文献   

15.
Strains of Lactobacillus reuteri and Lact. rhamnosus are used as probiotics in man and animal. The aim of this study was to determine whether the glycopeptide resistance in these lactobacilli has a similar genetic basis as in enterococci. Five Lact. reuteri strains and one Lact. rhamnosus, as well as four Enterococcus control strains, were probed for the vanA gene cluster, the vanB gene and the vanC gene by PCR and Southern hybridization, and DNA/DNA hybridization. Their resistance and plasmid patterns were also investigated. All Lactobacillus strains were resistant to vancomycin but susceptible to a broad range of antibiotics. Four of the Lactobacillus strains (including the Lact. rhamnosus strain) did not harbour any plasmid and two of them contained five and 6 plasmid bands respectively. None of the Lactobacillus strains possessed the vanA, vanB or vanC gene. These findings indicate that the glycopeptide resistance of the Lactobacillus strains analysed is different from the enterococcal type. The study provides reassurance on the safety of the Lactobacillus strains used as probiotics with regard to their vancomycin resistance.  相似文献   

16.
应用特异PCR快速鉴定微生物肥料中4种乳酸菌   总被引:1,自引:0,他引:1  
【目的】植物乳杆菌(Lactobacillus plantarum)、鼠李糖乳杆菌(L.rhamnosus)、嗜酸乳杆菌(L.acidophilus)和德氏乳杆菌(L.delbrueckii)是微生物肥料生产中常用的乳酸菌,它们表型特征相似,若采用传统方法鉴定则费时费力,为准确、快速地鉴定这些种,建立种特异PCR方法。【方法】利用NCBI中Primer-BLAST(引物设计和特异性检验工具),以GenBank数据库中上述菌种的recA和gyrB为靶基因,设计和筛选种特异性引物从而建立相应特异PCR鉴定方法。【结果】经过乳杆菌属(Lactobacillus)、乳球菌属(Lactococcus)、片球菌属(Pediococcus)、芽孢杆菌属(Bacillus)、类芽孢杆菌属(Paenibacillus)、短芽孢杆菌属(Brevibacillus)和假单胞菌属(Pseudomonas)7个属24个种共40株标准菌株的实验验证,4个目标种分别扩增出唯一的目的产物,而其他种均无目的扩增产物。采用建立的4种特异PCR方法对产品中分离的16株乳杆菌进行鉴定,结果与16S rDNA序列分析、Biolog鉴定结果一致。【结论】建立的特异PCR鉴定方法均具有较高的种内通用性和种间特异性,可快速、准确的用于微生物制剂中植物乳杆菌、德氏乳杆菌、鼠李糖乳杆菌、嗜酸乳杆菌的检测和鉴定,具有较好的应用前景。  相似文献   

17.
Phenotypic characterisation of Lactococcus and Enterococcus species remains unreliable as strains of both genera have been isolated which do not conform to the traditional criteria for separation of these genera. A bank of 131 isolates was phenotypically characterised by three methods: (a) traditional broth tests, (b) API Rapid ID 32 Strep and (c) BBL Crystal ID kits. Differences in genus designation between commercial kits were evident for 12 strains (9%), while 7 strains (5%) remained unidentified by either kit. Published 16S rRNA sequences were aligned and used to design genus-specific primers which, when used in separate PCR reactions, were capable of distinguishing all type strains of Lactococcus and Enterococcus. These primers did not react with known species of Streptococcus, Pediococcus, Lactobacillus, Leuconostoc or Tetragenococcus. Isolates which could not be identified by phenotype were assigned to either genus on the basis of the gene primers.  相似文献   

18.
Aims:  To develop a strain-specific rapid assay for identification and quantification of Lactobacillus rhamnosus GG in human faecal samples.
Methods and Results:  A unique random amplified polymorphic DNA (RAPD) band of the L. rhamnosus GG strain was isolated and sequenced. Strain-specific polymerase chain reaction (PCR) primers and probes were designed based on the sequence. Quantification was performed by the real-time PCR using a fluorescent resonance energy transfer (FRET) system. The specificity of the assay was tested with DNA isolated from a set of known strains and human faecal samples. The analytical sensitivity of the method for L. rhamnosus GG was about 10 CFU per assay, which corresponds to 105 CFU g−1 of wet faeces.
Conclusions:  Quantitative real-time PCR is a suitable method for strain-specific identification of L. rhamnosus GG in human faecal samples.
Significance and Impact of the Study:  Lactobacillus rhamnosus GG is one of the most studied probiotic strains in clinical trials but still lacks a DNA-based identification method. This study describes a real-time PCR method for strain-specific identification and quantification of L. rhamnosus GG in human faecal samples.  相似文献   

19.
Vaginal lactic acid-producing bacteria of 80 pre-menopausal women were studied by isolation on Blood and DeMan-Rogosa-Sharpe agar, PCR with group-specific primers for Lactobacillus-denaturing gradient gel electrophoresis (DGGE), and PCR with specific primers for V3 region in 16S rRNA-temporal temperature gel electrophoresis (TTGE). Conventional isolation method on media detected only one lactobacillus (Lactobacillus brevis) while TTGE detected only Lactobacillus sp. DGGE detected seven Lactobacillus species; L. coleohominis, L. crispatus, L. iners, L. reuteri, L. rhamnosus, L. vaginalis, and Leuconostoc lactis. L. acidophilus and L. gasseri, which are prevalent in Western women, were not detected in Korean women. Furthermore, L. rhamnosus, Leuc. lactis, L. coleohominis, and Weissella cibaria, which were not previously reported in the vaginal microbiota of Korean women, were detected. The five most prevalent LABs in vaginal microbiota in Korean women were L. iners, Enterococcus faecalis, L. crispatus, Leuc. lactis, and W. cibaria.  相似文献   

20.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号