首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases.  相似文献   

2.
The kinetics of cell wall turnover in Bacillus subtilis have been examined in detail. After pulse labeling of the peptidoglycan with N-acetylglucosamine, the newly formed peptidoglycan is stable for approximately three-quarters of a generation and is then degraded by a process that follows first-order kinetics. Deprivation of an auxotroph of amino acids required for protein synthesis results in a cessation of turnover. If a period of amino acid starvation occurs during the lag phase of turnover, then the initiation of turnover is delayed for a period of time equivalent to the starvation period. During amino acid starvation, new cell wall peptidoglycan is synthesized and added to preexisting cell wall. This peptidoglycan after resumption of growth is also subject to degradation (turnover). It is suggested that cell wall turnover is dependent on cell growth and elongation. Several possible control mechanisms for cell wall autolytic enzymes are discussed in light of these observations.  相似文献   

3.
Cultures ofBacillus subtilis in balanced growth exhibited a constant rate of turnover of peptidoglycan for 2.5–3.5 generations. Turnover was measured by determining the retention of a labeled precursor of peptidoglycan. When fluorescein-conjugated concanavalin A was used to monitor the fate of cell surface teichoic acid, label disappeared from the cylinders more rapidly than from caps and septa. The results suggest that cell wall poles are partially resistant to turnover.  相似文献   

4.
Structural differentiation of the Bacillus subtilis 168 cell wall.   总被引:2,自引:0,他引:2       下载免费PDF全文
Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes, and that the wall of exponentially growing B. subtilis cells contains regions of structural differentiation.  相似文献   

5.
Bacillus subtilis mutants with reduced rates of cell wall autolysis reached a constant rate of wall turnover after a longer lag than the standard strain but eventually showed the same turnover rate. In reverse, a turnover-deficient mutant autolysed at a slightly higher rate than the standard strain. Consequently, there is no correlation between the rates of cell wall turnover and autolysis.  相似文献   

6.
Cell wall turnover was studied in cultures of Bacillus subtilis in which growth was inhibited by nutrient starvation or by the addition of antibiotics. Concomitantly, the synthesis of wall, as measured by the incorporation of radioactively labeled N-acetylglucosamine, was followed in some of these cultures. In potassium- or phosphate-starved cultures, growth stopped, but wall turnover continued at a rate slightly lower than that in the control cultures. Lysis of cells did not occur. In glucose-starved cultures, continued wall turnover caused lysis of cells, since wall synthesis apparently was inhibited. The same phenomenon was observed after growth arrest by the addition of wall synthesis inhibitors such as fosfomycin, cycloserine, penicillin G, and vancomycin. Growth arrest by the addition of chloramphenicol allowed the continuation of wall synthesis; therefore, the observed turnover generally did not cause cell lysis.  相似文献   

7.
Cosegregation of cell wall and DNA in Bacillus subtilis.   总被引:1,自引:7,他引:1       下载免费PDF全文
Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respectively. Simultaneous labeling of cell wall and DNA (iii) provided figures almost identical to those obtained for cell wall alone, (i), implying cosegregation of the two components. Statistical analysis ruled out their random distribution into daughter cells. Measurements of the positions of grain clusters at the end of the chase period along chains of cells, each derived from a single cell at the beginning of chase, show that cell wall units are localized according to a symmetrical pattern, whereas those of DNA are distributed in an asymmetrical but highly regular way. It appears that of two cell wall units of the same age one only has a strand of DNA attached to it. We present a simple diagrammatic model of cell wall organization and DNA-cell wall association which is compatible with our observations. Finally, we discuss previous experiments pertinent to cosegregation of cell wall and DNA obtained with cells grown on solid media as well as with germinating spores; an explanation for the independent segregation of cell wall and DNA observed in the latter case is advanced.  相似文献   

8.
9.
Distribution of teichoic acid in the cell wall of Bacillus subtilis.   总被引:4,自引:11,他引:4       下载免费PDF全文
Hydrolysis of the cell wall of Bacillus subtilis 168 by autolysins or lysozyme resulted in the exposure of glucosylated teichoic acid molecules as evidenced by increased precipitation of [14C] concanavalin A. The number of concanavalin A-reactive sites increased significantly after only limited enzymatic digestion of the walls. Quantitative analyses of [14C] concanavalin A-treated wall or wall hydrolysate complexes indicate that approximately one-half of the teichoic acid molecules are surface-exposed, whereas the remainder are probably embedded within the peptidoglycan matrix. Treatment of the cell walls with sodium dodecyl sulfate or Triton X-100 did not result in new concanavalin A-reactive sites. Partial autolysis diminished the ability of the cell walls to adsorb bacteriophage phi25. Fluorescein-labeled concanavalin A bound intensely over the entire surface of growing B. subtilis 168 cells, suggesting that teichoic acid molecules are located on the total solvent-exposed surface area of the bacteria.  相似文献   

10.
The cell wall of Bacillus subtilis is capable of binding different kinds of metal ions. The wall-ion complex appears to be dependent on both phosphoryl from teichoic acid and carboxylate from peptidoglycan. In the present study, cationized ferritin (CF) was used as a probe for charge distribution on the wall of B. subtilis 168. Detergent-extracted cell walls bound CF only on the outer wall face. Completed cell poles bound CF, but septa did not. When the walls were permitted to autolyze briefly, binding of CF occurred on both faces. In contrast, limited hydrolysis of the walls by egg white lysozyme resulted in the penetration of CF into the wall matrix. When walls were made teichoic acid-free, CF-binding asymmetry was preserved, suggesting that carboxyl groups were oriented toward the surface. Walls with carboxylates chemically neutralized also retained charge asymmetry. Phosphate-free and carboxyl-modified walls bound CF only poorly or not at all. These results indicate that negative charges contributed by both phosphate and carboxyl are responsible for the binding of CF and that the observed asymmetry in the distribution of the label is due to the orientation of teichoic acid and muramyl peptides toward the outside of the cell wall, above the plane of the glycan strands.  相似文献   

11.
Organization of teichoic acid in the cell wall of Bacillus subtilis.   总被引:25,自引:14,他引:11       下载免费PDF全文
The phytohemagglutinin, concanavalin A (Con A), interacts specifically and reversibly with the polyglucosyl glycerol phosphate teichoic acid of Bacillus subtilis 168 cell walls. Advantage has been taken of this interaction to examine the organization of the surface teichoic acid at the ultrastructural level. Con A-treated whole cells and cell walls contain an irregular, fluffy layer 25 to 60 nm thick which is absent in untreated or alpha-methyl glucoside-treated preparations. This discontinuous layer is present only on the outer profile of Con-A-treated cell walls. The surface teichoic acid is proposed to be oriented perpendicular to the long axis of the cell. Fixation and embedment for electron microscopy result in condensation of this layer which then contributes to the stainable portion of the wall. Con A treatment binds adjacent teichoic acid molecules in their native configuration producing the irregular, fluffy layer visualized.  相似文献   

12.
Nigericin, monensin, valinomycin + carbonyl-cyanide-m-chlorophenylhydrazone and gramicidin inhibit the respiration of Bacillus subtilis cells incubated with NAD-dependent substrates or succinate, but not with ascorbate + N,N,N',N'-tetramethyl-p- phenylene-diamine. The level of inhibition was decreased by potassium ions and, in a lower degree, by sodium or ammonium ions. The results obtained suggest that the respiration of Bacillus subtilis depends on the presence of monovalent cations whose effects seem to be directed at complexes I, III and probably complex II of the respiratory chain.  相似文献   

13.
Lipoteichoic acid (LTA) was extracted by means of hot aqueous phenol from Bacillus subtilis subsp. niger WM cells grown under various conditions in chemostat culture. The extracts were partially purified by nuclease treatment and gel permeation chromatography. Chemical analyses revealed a composition consistent with a polyglycerol phosphate polymer. The influence on autolysis of the LTAs thus obtained was studied with both whole cells and autolysin-containing native walls of B. subtilis subsp. niger WM. Lysis rates of phosphate-limited cells could be reduced to about 40% of the control rate by the addition of LTA, whereas lysis of cells grown under phosphate-sufficient conditions was affected to a much lesser extent. The lysis of native walls prepared from variously grown cells proved to be fairly insensitive to the addition of LTA. The effect of LTA on wall turnover was studied by following the release of radioactively labeled wall material during exponential growth. The most obvious effect of LTA was a lowered first-order rate of release of labeled wall material; calculations according to the model for cell wall turnover in Bacillus spp. formulated by De Boer et al. (W. R. De Boer, F. J. Kruyssen, and J. T. M. Wouters, J. Bacteriol. 145:50-60, 1981) revealed changes in wall geometry and not in turnover rate in the presence of LTA.  相似文献   

14.
15.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:8,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

16.
To investigate the chemical mechanism of silicate binding to the surface of Bacillus subtilis, we chemically modified cell wall carboxylates to reverse their charge by the addition of an ethylenediamine ligand. For up to 9 weeks, mixtures of Si, Al-Fe-Si, and Al-Fe-Si plus toxic heavy metals were reacted with these cells for comparison with control cells and abiotic solutions. In general, more Si and less metal were bound to the chemically modified surfaces, thereby showing the importance of an electropositive charge in cell walls for fine-grain silicate mineral development. The predominant reaction for this development was the initial silicate-to-amine complexation in the peptidoglycan of ethylenediamine-modified and control cell walls, although metal ion bridging between electronegative sites and silicate had an additive effect. The binding of silicate to these bacterial surfaces can thus be described as outer sphere complex formation because it occurs through electrostatic interaction.  相似文献   

17.
A new relaxed mutant of Bacillus subtilis.   总被引:3,自引:1,他引:2       下载免费PDF全文
A new relaxed mutant of Bacillus subtilis was isolated by screening Rifr clones for alterations in stringent control. The Rifr relaxed mutant which is described was found to contain a second-site mutation conferring a relaxed response to an energy source downshift and was partially relaxed after amino acid starvation. The new rel locus, called relG, was distinct from the two other known rel loci in B. subtilis, relA, and relC.  相似文献   

18.
Inhibition of d-alanine carboxypeptidase in Bacillus subtilis by 95% caused no measurable change in the degree of cross-linking of the peptidoglycan.  相似文献   

19.
Sites of metal deposition in the cell wall of Bacillus subtilis   总被引:29,自引:9,他引:29       下载免费PDF全文
Amine and carboxyl groups of the cell wall of Bacillus subtilis were chemically modified individually to neutralize their electrochemical charge for determination of their contribution to the metal uptake process. Mild alkali treatment removed ca. 94% of the constituent teichoic acid (expressed as inorganic phosphorus) and allowed estimation of metal interaction with phosphodiester bonds. Chemical modifications of amine functions did not reduce the metal uptake values as compared to native walls, whereas extraction of teichoic acid caused a stoichiometric reduction in levels. In contrast, alteration of carboxyl groups severely limited metal deposition of most of the metals tested. X-ray diffraction and electron microscopy suggested, in this case, that the form and structure of the metal deposit could be different from that found in native walls. The observations suggest that carboxyl groups provide the major site of metal deposition in the B. subtilis wall.  相似文献   

20.
Summary Mutants of Saccharomyces cerevisiae lacking pyruvate kinase (EC 2.7.1.40) are described. These have less than 0.5% of the pyruvate kinase activity of the wild type. All the other glycolytic enymes are present in normal amounts in these mutants. The mutation is recessive and segregates in diploids as a single gene. Five alleles examined fail to complement one another. Tetrad analysis and mitotic recombination data place the mutation on the left arm of chromosome I distal to cys 1. The majority of single-step spontaneous revertants on glucose regain the enzyme activity fully and this activity appears, by a number of criteria, to be due to the same enzyme present in the wild type. Some of these revertants become nuclear petites. The mutants do neither grow on nor ferment sugars but do grow on ethyl alcohol or pyruvate. Glucose addition to cultures growing on alcohol arrests growth until glucose is exhausted. The steady state rate of glucose utilization is slower than in the wild type. This is associated with the accumulation of as much as 5 moles P-enolpyruvate per g wet weight of cells and proportional amounts of 2-P-glyceric and 3-P glyceric acids.The mutation is believed to involve some regulatory element in the synthesis of pyruvate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号