首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
A large and diverse spectrum of oncogenes has been implicated as a contributor to angiogenesis in solid tumors based, in part, on its ability to induce proangiogenic growth factors such as vascular endothelial growth factor (VEGF), and the fact that various anti-oncogenic signaling inhibitor drugs have been shown to reverse such proangiogenic effects both in vitro and in vivo. Because leukemias are now also considered to be angiogenesis-dependent malignancies, we asked whether a similar paradigm might exist for the BCR-ABL oncogene and the Bcr-Abl targeting drug, STI-571 (imatinib mesylate), in the context of chronic myelogenous leukemia (CML) cells. We found that levels of VEGF expression in BCR-ABL-positive K562 cells were reduced in vitro by treatment with STI-571 in a dose-dependent fashion. Transfection of BCR-ABL into murine myeloid 32D and human megakaryocyte MO7e hematopoietic cells resulted in enhanced VEGF expression, which could be further elevated by the exposure to cytokines such as interleukin 3 and granulocyte macrophage colony-stimulating factor. We also found that conditioned media taken from 32D-p210-transfected cells could stimulate human umbilical vein endothelial cells by increasing phosphorylation of VEGF-R2/KDR and the downstream serine/threonine kinase PKB/Akt, an important regulator of endothelial cell survival. Moreover, amplification of BCR-ABL in STI-571-resistant cells was associated with elevated VEGF expression levels which could be reversed by treatment with higher concentrations of STI-571. Taken together, our results implicate BCR-ABL as a possible regulator of CML angiogenesis and raise the possibility that STI-571 could mediate some of its anti-CML properties in vivo through an angiogenesis-dependent mechanism.  相似文献   

2.
The tyrosine kinase inhibitor STI-571 potently blocks BCR-Abl, platelet-derived growth factor (PDGF) alpha- and beta-receptors, and c-Kit kinase activity. Flt3, a receptor tyrosine kinase closely related to PDGF receptors and c-Kit is, however, not inhibited by STI-571. Sequence alignments of different kinases and indications from the crystal structure of the STI-571 Abl kinase complex revealed amino acid residues that are probably crucial for this activity profile. It was predicted that Flt3 Phe-691 in the beta5 strand may sterically prevent interaction with STI-571. The point mutants Flt3 F691T and PDGFbeta-receptor T681F were constructed, and kinase assays showed that the Flt3 mutant but not the PDGFbeta-receptor mutant is inhibited by STI-571. Docking of STI-571 into computer models of the PDGFbeta-receptor and Flt3 kinase domains and comparison with the crystal structure of the STI-571 Abl kinase complex indicated very similar binding sites among the three nonphosphorylated kinases, suggesting corresponding courses of their Asp-Phe-Gly motifs and activation loops. Accordingly, we observed reduced sensitivity of preactivated compared with nonactivated PDGFR-beta for the inhibition by STI-571. Courses of the activation loop that collide with STI-571 binding explain its inactivity at other kinases as the insulin receptor. The binding site models of PDGFR-beta and Flt3 were applied to predict structural approaches for more selective PDGFbeta-receptor inhibitors.  相似文献   

3.
STI-571: an anticancer protein-tyrosine kinase inhibitor   总被引:5,自引:0,他引:5  
STI-571 (imatinib, Gleevec, Glivec, CGP 57148) is an inhibitor of the Abl group of protein-tyrosine kinases. One of these enzymes, the Bcr-Abl oncoprotein, results from the fusion of the BCR and ABL genes that result from the reciprocal chromosomal translocation that forms the Philadelphia chromosome. The Philadelphia chromosome occurs in 95% of people with chronic myeloid leukemia. ABL is the cellular homologue of the oncogene found in murine Abelson leukemia virus, and BCR refers to breakpoint cluster region. The Bcr-Abl oncoprotein exhibits elevated protein-tyrosine kinase activity, which is strongly implicated in the mechanism of development of chronic myeloid leukemia. STI-571 is effective in the treatment of the stable phase of chronic myeloid leukemia. The c-Abl protein kinase domain exists in an active and inactive conformation. STI-571 binds only to the inactive state of the enzyme as shown by X-ray crystallography. The drug binds to a portion of the ATP-binding site and extends from there into adjacent hydrophobic regions. STI-571 is a competitive inhibitor of Abl kinase with respect to ATP. Resistance to STI-571 is often the result of mutations in residues of the Bcr-Abl kinase that ordinarily bind to the drug. Inhibition of target protein kinases represents an emerging therapeutic strategy for the treatment of cancer.  相似文献   

4.
Neuroblastoma (NB) expresses the tyrosine kinase receptors c-Kit, PDGFR-alpha and -beta-targets for STI-571.We investigated a possible combination therapy of STI-571 with retinoic acid (RA) and gamma-irradiation on NB cell viability in vitro. Expression of tyrosine kinase receptors and their ligands was examined in 6 NB cell lines by RT-PCR and FACS. The effect on cell viability was determined by MTT assay. Cell viability of all 6 NB cell lines was significantly inhibited after treatment with 20 microM STI-571 for 72h, two cell lines responding already to 10 microM. Cell lines responded irrespective of their mRNA status or cell surface expression of c-Kit, PDGFR-alpha and -beta. Co-incubation with 9-cis RA sensitized cells to the inhibitory effects of STI-571. However, pre-treatment with 9-cis RA resulted in resistance of NB cell lines to STI-571 and gamma-irradiation. Treatment of NB with STI-571 in combination with 9-cis RA might be a therapeutic strategy for patients in consolidation therapy who have completed gamma-irradiation therapy.  相似文献   

5.
6.
7.
The deregulated tyrosine kinase activity of BCR-ABL is necessary and sufficient to induce chronic myelogenous leukemia (CML). This observation has paved the way for the development of small-molecule inhibitors specifically targeting the kinase activity of the BCR-ABL protein. Indeed, the amazing success of imatinib has revolutionized the whole area of targeted cancer therapeutics. However, enthusiasm for the striking efficacy of imatinib has been tempered by the development of clinical resistance. In essentially all cases, resistance results from kinase domain mutations and/or overexpression of the BCR-ABL gene. To overcome resistance, several novel BCR-ABL inhibitors have been developed and are in clinical trials, though it is inevitable that resistance to second-generation inhibitors will occur as well. Nonetheless, kinases represent an attractive target for therapeutic intervention in several diseases and, at present, some 50 different kinase inhibitors are in clinical trials. We anticipate that resistance to these compounds will follow mechanisms similar to those observed with imatinib. Resistance mutations cause their effect either by direct steric hindrance to drug binding or by allosterically modulating kinase dynamics. This review highlights the principal mechanisms underlying point mutations from these two different classes to confer drug resistance.  相似文献   

8.
A myristoyl/phosphotyrosine switch regulates c-Abl   总被引:16,自引:0,他引:16  
The c-Abl tyrosine kinase is inhibited by mechanisms that are poorly understood. Disruption of these mechanisms in the Bcr-Abl oncoprotein leads to several forms of human leukemia. We found that like Src kinases, c-Abl 1b is activated by phosphotyrosine ligands. Ligand-activated c-Abl is particularly sensitive to the anti-cancer drug STI-571/Gleevec/imatinib (STI-571). The SH2 domain-phosphorylated tail interaction in Src kinases is functionally replaced in c-Abl by an intramolecular engagement of the N-terminal myristoyl modification with the kinase domain. Functional studies coupled with structural analysis define a myristoyl/phosphotyrosine switch in c-Abl that regulates docking and accessibility of the SH2 domain. This mechanism offers an explanation for the observed cellular activation of c-Abl by tyrosine-phosphorylated proteins, the intracellular mobility of c-Abl, and it provides new insights into the mechanism of action of STI-571.  相似文献   

9.
STI571, a selective inhibitor of Bcr-Abl, has been a successful therapeutic agent in clinical trials for chronic myelogenous leukemia. Chronic phase chronic myelogenous leukemia patients treated with STI571 have durable responses; however, most responding blast phase patients relapse despite continued therapy. Co-crystallization studies of Abl kinase and an STI571-related compound identify specific amino acid residues as critical to STI571 binding, one of which, T315, has been characterized as an acquired Thr to Ile mutation in relapsed patients. Other studies, however, suggest that mutations other than these predicted contact points are capable of conferring STI571 resistance in relapsed patients. Using a variety of models of STI571 binding to the Abl kinase, we have performed an extensive mutational analysis of sites that might alter the sensitivity of the Abl kinase to STI571. Although mutation of many of the predicted contact points between Abl and STI571 result in a kinase-inactive protein, additional mutations that render the Abl kinase less sensitive to STI571 demonstrate a broad range of possibilities for clinical resistance that are now becoming evident.  相似文献   

10.
The chimeric BCR-ABL oncoprotein is the molecular hallmark of chronic myelogenous leukemia (CML). BCR-ABL contains nuclear import and export signals but it is localized only in the cytoplasm where it activates mitogenic and anti-apoptotic pathways. We have found that inhibition of the BCR-ABL tyrosine kinase, either by mutation or by the drug STI571, can stimulate its nuclear entry. By combining STI571 with leptomycin B (LMB) to block nuclear export, we trapped BCR-ABL in the nucleus and the nuclear BCR-ABL tyrosine kinase activates apoptosis. As a result, the combined treatment with STI571 and LMB causes the irreversible and complete killing of BCR-ABL transformed cells, whereas the effect of either drug alone is fully reversible. The combined treatment with STI571 and LMB also preferentially eliminates mouse bone marrow cells that express BCR-ABL. These results indicate that nuclear entrapment of BCR-ABL can be used as a therapeutic strategy to selectively kill chronic myelogenous leukemia cells.  相似文献   

11.
Point mutations of bcr-abl tyrosine kinase are the most frequent causes of imatinib resistance in chronic myeloid leukaemia (CML) patients. In most CML cases with BCR-ABL mutations leading to imatinib resistance the second generation of tyrosine kinase inhibitors (TKI- e.g. nilotinib or dasatinib) may be effective. Here, we report a case of a CML patient who during imatinib treatment did not obtain clinical and cytogenetic response within 12 months of therapy. The sequencing of BCR-ABL kinase domains was performed and revealed the presence of a F359I point mutation (TTC-to-ATC nucleotide change leading to Phe-to-Ile amino acid substitution). After 1 month of nilotinib therapy a rapid progression of clinical symptoms was observed. In the presence of the F359I point mutation only dasatinib treatment overcame imatinib and nilotinib resistance.  相似文献   

12.
BCR-ABL tyrosine kinase inhibitors, such as imatinib (Gleevec) are highly effective in treating human Philadelphia chromosome-positive (Ph+) chronic myeloid leukaemia (CML) in chronic phase but not in terminal acute phase; acquired drug resistance caused mainly by the development of BCR-ABL kinase domain mutations prevents cure of the leukaemia. In addition, imatinib is ineffective in treating Ph+ B-cell acute lymphoblastic leukaemia (B-ALL) and CML blast crisis, even in the absence of the kinase domain mutations. This type of drug resistance that is unrelated to BCR-ABL kinase domain mutations is caused by the insensitivity of leukaemic stem cells to kinase inhibitors such as imatinib and dasatinib, and by activation of a newly-identified signalling pathway involving SRC kinases that are independent of BCR-ABL kinase activity for activation. This SRC pathway is essential for leukaemic cells to survive imatinib treatment and for CML transition to lymphoid blast crisis. Apart from BCR-ABL and SRC kinases, stem cell pathways must also be targeted for curative therapy of Ph+ leukaemia.  相似文献   

13.
Therapies that target BCR-ABL in chronic myeloid leukemia, including imatinib, dasatinib and nilotinib, have dramatically improved patient outcome. BCR-ABL mutations, however, contribute to treatment resistance by disrupting drug contact sites or causing conformational changes thus making contact sites inaccessible. Clinical data indicate that developing BCR-ABL mutations during imatinib treatment is predictive for shorter progression-free survival, and that outcomes may depend on mutation type or location. In vitro, dasatinib and nilotinib inhibit most imatinib-resistant BCR-ABL mutations, except for T315I. In clinical studies, other mutations associated with treatment resistance include V299L, T315A, and F317I/L for dasatinib and Y253F/H, E255K/V, and F359C/V for nilotinib. Evaluating patients with clinical signs of resistance for BCR-ABL mutations is an important component of disease monitoring, potentially facilitating selection of subsequent therapy. First-line treatment with dasatinib or nilotinib instead of imatinib may reduce emergence of resistance but novel agents are needed to overcome the problematic T315I mutation.  相似文献   

14.
BCR-ABL is a deregulated tyrosine kinase expressed in Philadelphia chromosome-positive human leukemias. Prolongation of hematopoietic cell survival by inhibition of apoptosis has been proposed to be an integral component of BCR-ABL-induced chronic myelogenous leukemia. BCR-ABL elicits transformation of both fibroblast and hematopoietic cells and blocks apoptosis following cytokine deprivation in various factor-dependent cells. To elucidate the mechanisms whereby BCR-ABL induces transformation and blocks apoptosis in hematopoietic cells, we examined the biological effects of expression of a series of BCR-ABL mutants. Single amino acid substitutions in the GRB2 binding site (Y177F), Src homology 2 domain (R552L), or an autophosphorylation site in the tyrosine kinase domain (Y793F) do not diminish the antiapoptotic and transforming properties of BCR-ABL in hematopoietic cells, although these mutations were previously shown to drastically reduce the transforming activity of BCR-ABL in fibroblasts. A BCR-ABL molecule containing all three mutations (Y177F/R552L/Y793F) exhibits a severe decrease in transforming and antiapoptotic activities compared with the wild-type BCR-ABL protein in 32D myeloid progenitor cells. Ras is activated, the SHC adapter protein is tyrosine phosphorylated and binds GRB2, and myc mRNA levels are increased following expression of all kinase active BCR-ABL proteins with the exception of the Y177F/R552L/Y793F BCR-ABL mutant in 32D cells. We propose that BCR-ABL uses multiple pathways to activate Ras in hematopoietic cells and that this activation is necessary for the transforming and antiapoptotic activities of BCR-ABL. However, Ras activation is not sufficient for BCR-ABL-mediated transformation. A BCR-ABL deletion mutant (delta 176-427) that activates Ras and blocks apoptosis but has severely impaired transforming ability in 32D cells has been identified. These data suggest that BCR-ABL requires additional signaling components to elicit tumorigenic growth which are distinct from those required to block apoptosis.  相似文献   

15.
The ONIOM2 (B3LYP/6–31G (d, p): PM3) and B3LYP/6–31G (d, p) methods were applied to investigate the interaction between STI-571 and abelson tyrosine kinase binding site. The complex of N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)- phenyl]-benzamide (part of STI-571) and related 16 amino acid residues were found at B3LYP/6–31G (d, p) level to have hydrogen bonds and π....π stacking interaction, their binding energy via HAF optimization was −20.4 kcal mol−1. The results derived from this study agreed well with the reported observation. Figure Optimized structure of STI-571 and Thr315 in abelson tyrosine kinase based on ONIOM2 method  相似文献   

16.
Structural basis for the autoinhibition of c-Abl tyrosine kinase   总被引:28,自引:0,他引:28  
c-Abl is normally regulated by an autoinhibitory mechanism, the disruption of which leads to chronic myelogenous leukemia. The details of this mechanism have been elusive because c-Abl lacks a phosphotyrosine residue that triggers the assembly of the autoinhibited form of the closely related Src kinases by internally engaging the SH2 domain. Crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b binds to the kinase domain and induces conformational changes that allow the SH2 and SH3 domains to dock onto it. Autoinhibited c-Abl forms an assembly that is strikingly similar to that of inactive Src kinases but with specific differences that explain the differential ability of the drug STI-571/Gleevec/imatinib (STI-571) to inhibit the catalytic activity of Abl, but not that of c-Src.  相似文献   

17.
It is widely recognized that activated hepatic stellate cells (HSC) play a pivotal role in development of liver fibrosis. A platelet-derived growth factor (PDGF) is the most potent mitogen for HSC. The aim of this study was to examine the effect of imatinib mesylate (STI-571, Gleevec), a clinically used PDGF receptor (PDGFR) tyrosine kinase inhibitor, on development of experimental liver fibrosis. The rat model of pig serum-induced hepatic fibrosis was used to assess the effect of daily oral administration of STI-571 on the indexes of fibrosis. STI-571 markedly attenuated development of liver fibrosis and hepatic hydroxyproline and serum fibrosis markers. The number of alpha-smooth muscle actin-positive cells and mRNA expression of alpha2-(I)-procollagen, tissue inhibitor of metalloproteinases-1, and transforming growth factor-beta were also significantly suppressed by STI-571. Our in vitro study showed that STI-571 markedly attenuated PDGF-BB-induced proliferation and migration and alpha-SMA and alpha2-(I)-procollagen mRNA of activated HSC in a dose-dependent manner. STI-571 also significantly attenuated PDGF-BB-induced phosphorylation of PDGFR-beta, MEK1/2, and Akt in activated HSC. Because STI-571 is widely used in clinical practice, it may provide an effective new strategy for antifibrosis therapy.  相似文献   

18.
Inhibition of BCR-ABL tyrosine kinase activity has shown to be essential for the treatment of chronic myelogenous leukemia (CML). However, drug resistance has quickly arisen in recent clinical trials for STI571 (Gleevec), which is the first approved drug of CML by inhibiting ABL tyrosine kinase. It is desirable to develop new types of ABL tyrosine kinase inhibitors that may overcome this drug resistance problem. Here we present the discovery of novel inhibitors targeted at the catalytic domain of ABL tyrosine kinase by using three-dimensional database searching techniques. From a database containing 200,000 commercially available compounds, the top 1000 compounds with the best DOCK energy score were selected and subjected to structural diversity and drug likeness analysis, 15 compounds were submitted for biological assay. Eight out of the 15 showed inhibitory activity against K562 cells with IC(50) value ranging from 10 to 200 microM. Two promising compounds showed inhibition in further ABL tyrosine phosphorylation assay. It is anticipated that those two compounds can serve as lead compounds for further drug design and optimization.  相似文献   

19.
Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases.  相似文献   

20.
Imatinib mesylate (STI571), a specific inhibitor of the BCR-ABL tyrosine kinase, exhibits potent antileukemic effects in vitro and in vivo. Despite the well established role of STI571 in the treatment of chronic myelogenous leukemia, the precise mechanisms by which inhibition of BCR-ABL tyrosine kinase activity results in generation of antileukemic responses remain unknown. In the present study we provide evidence that treatment of CML-derived BCR-ABL-expressing leukemia cells with STI571 results in activation of the p38 mitogen-activated protein (MAP) kinase signaling pathway. Our data indicate that STI571 induces phosphorylation of the p38 and activation of its kinase domain, in KT-1 cells and other BCR-ABL-expressing cell lines. We also identify the kinases MAP kinase-activated protein kinase-2 and Msk1 as two downstream effectors of p38, activated during inhibition of BCR-ABL activity by STI571. Importantly, pharmacological inhibition of p38 reverses the growth inhibitory effects of STI571 on primary leukemic colony-forming unit granulocyte/macrophage progenitors from patients with CML. Altogether, our data establish that activation of the p38 MAP kinase signaling cascade plays an important role in the generation of the effects of STI571 on BCR-ABL-expressing cells. They also suggest that, in addition to activation of mitogenic pathways, BCR-ABL promotes leukemogenesis by suppressing the function of growth inhibitory signaling cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号