首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in glutathione (GSH) and glutathione disulfide (GSSG) levels and/or redox status have been suggested to mediate the induction of heat shock proteins (HSPs) that follows exposure to oxidizing agents such as ethanol. Here we report the effects of ethanol administration to rats at intracellular levels of GSH, GSSG, HSP70, and protein carbonyls in brain and liver. Following 7 days of ethanol administration, there was a significant decrease in GSH, a significant induction of HSP70, and a significant increase in protein carbonyls in all brain regions studied and in liver. In cortex, striatum, and hippocampus there was a significant correlation between (a) the decrease in GSH, (b) the increase in GSSG, and (c) the decrease in GSH/GSSG ratio and HSP70 levels induced in response to ethanol. These data support the hypothesis that a redox mechanism may be involved in the heat-shock signal pathway responsible for HSP70 induction in the brain.  相似文献   

2.
The role of HSP27 in cell growth and resistance to stress was investigated using murine fibrosarcoma L929 cells (normally devoid of constitutively expressed small HSPs) and human osteoblast-like SaOS-2 cells stably transfected with a human hsp27 expression vector. Our data showed that our L929 cells were more resistant to oxidative stress than generally observed for this line. Production of HSP27 in these cells led to a marked decrease in growth rate associated with a series of phenotypical changes, including cell spreading, cellular and nuclear hypertrophy, development of an irregular outline, and a tremendous accumulation of actin stress fibers. By contrast, none of these changes was observable in SaOS-2/hsp27 transfectants overexpressing the protein product. Together, these observations are consistent with a cause-to-effect cascade relationship between increased (or induced) HSP27 expression, changes in cytoskeletal organization, and decreased growth. On the other hand, whereas the transfection of the hsp27 gene increased the cell resistance to heat in both cell lines, only in SaOS-2 cells was this associated with protection to the cytotoxic action of tumor necrosis factor-alpha (TNF-alpha) and etoposide. Unexpectedly, L929/hsp27 transfectants exhibited an increased sensitivity to both agents and also to H2O2. These data thus imply that different mechanisms are involved in the cell resistance to heat shock and to the cytotoxic action of TNF-alpha, etoposide, and H2O2. They also plead against the simple view that overexpression of a phosphorylatable HSP27 would necessarily be beneficial in terms of increased cell resistance to any type of stress. Our data further indicate that the role of HSP27 in cellular resistance to stress and in cell proliferation involves different targets and that the ultimate result of its interference with these processes depends on the intracellular context in which the protein is expressed.  相似文献   

3.
Heat shock proteins (HSPs) help maintain cellular function in stressful situations, but the processes controlling their interactions with target proteins are not well defined. This study examined the binding of HSP72, HSP25, and αB-crystallin in skeletal muscle fibers following various stresses. Rat soleus (SOL) and extensor digitorum longus (EDL) muscles were subjected in vitro to heat stress or strongly fatiguing stimulation. Superficial fibers were "skinned" by microdissection and HSP diffusibility assessed from the extent of washout following 10- to 30 min exposure to a physiological intracellular solution. In fibers from nonstressed (control) SOL muscle, >80% of each HSP is readily diffusible. However, after heating a muscle to 40°C for 30 min ~95% of HSP25 and αB-crystallin becomes tightly bound at nonmembranous myofibrillar sites, whereas HSP72 bound at membranous sites only after heat treatment to ≥44°C. The ratio of reduced to oxidized cytoplasmic glutathione (GSH:GSSG) decreased approximately two- and fourfold after heating muscles to 40° and 45°C, respectively. The reducing agent dithiothreitol reversed HSP72 binding in heated muscles but had no effect on the other HSPs. Intense in vitro stimulation of SOL muscles, sufficient to elicit substantial oxidation-related loss of maximum force and approximately fourfold decrease in the GSH:GSSG ratio, had no effect on diffusibility of any of the HSPs. When skinned fibers from heat-treated muscles were bathed with additional exogenous HSP72, total binding increased approximately two- and 10-fold, respectively, in SOL and EDL fibers, possibly reflective of the relative sarco(endo)plasmic reticulum Ca(2+)-ATPase pump densities in the two fiber types. Phosphorylation at Ser59 on αB-crystallin and Ser85 on HSP25 increased with heat treatment but did not appear to determine HSP binding. The findings highlight major differences in the processes controlling binding of HSP72 and the two small HSPs. Binding was not directly related to cytoplasmic oxidative status, but oxidation of cysteine residues influenced HSP72 binding.  相似文献   

4.
Proportions between oxidized and reduced glutathione forms were determined in vacuoles isolated from red beet (Beta vulgaris L.) taproots. The pool of vacuolar glutathione was compared with glutathione pools in isolated plastids and mitochondria. The ratio of glutathione forms was assessed by approved methods, such as fluorescence microscopy with the fluorescent probe monochlorobimane (MCB), high-performance liquid chromatography (HPLC), and spectrophotometry with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). The fluorescence microscopy revealed comparatively low concentrations of reduced glutathione (GSH) in vacuoles. The GSH content was 104 μM on average, which was lower than the GSH levels in mitochondria (448 μM) and plastids (379 μM). The content of reduced (GSH) and oxidized (GSSG) glutathione forms was quantified by means of HPLC and spectrophotometric assays with DTNB. The glutathione concentrations determined by HPLC in the vacuoles were 182 nmol GSH and 25 nmol GSSG per milligram protein. The respective concentrations of GSH and GSSG in the plastids were 112 and 6 nmol/mg protein and they were 228 and 10 nmol/mg protein in the mitochondria. The levels of GSH determined with DTNB were 1.5 times lower, whereas the amounts of GSSG were, by contrast, 1.5–2 times higher than in the HPLC assays. Although the glutathione redox ratios depended to some extent on the method used, the GSH/GSSG ratios were always lower for vacuoles than for plastids and mitochondria. In vacuoles, the pool of oxidized glutathione was higher than in other organelles.  相似文献   

5.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

6.
Abstract. The expression of heat-shock proteins (HSPs) is enhanced in stressed cells and can protect cells from stress-induced injury. However, existing data about the relationship between apoptosis and HSP expression is contradictory. In this paper, a mouse lymphoma cell death model system is used to detect simultaneously both the process of apoptosis and the level of HSP expression. The model was established after discovering that spontaneous apoptosis and spontaneous cell surface HSP expression occurs in EL-4 mouse lymphoma cells during normal optimal culture conditions. The data show that apoptotic EL-4 cells had higher levels of hsp25, hsp60, hsp70 and hsp90 exposed on the plasma membrane surface than viable cells. The level of surface HSPs was found to increase through several stages of early and late apoptotic death as measured by flow cytometry, with the highest levels observed during the loss of cell membrane phospholipid asymmetry. Heat shock and actinomycin D significantly increased the proportion of apoptotic cells in culture. However, hyperthermia only stimulated a weak and temporary increase in surface HSP expression, whereas actinomycin D strongly elevated the level of surface and intracellular HSPs, particularly in live cells. These results show an associative relationship between apoptosis and HSP expression. The relationship between the progression of cell death and HSP expression suggests a role for membrane HSP expression in programmed cell death.  相似文献   

7.
Glutathione (GSH) is the major thiol-disulfide redox buffer in cells and is a critical component of antioxidant defense. Here we examined GSH redox balance in the intestinal mucosa during the annual cycle of 13-lined ground squirrels (Spermophilus tridecemlineatus). The ratio of reduced GSH to its oxidized form (glutathione disulfide, GSSG), which is an index of oxidative stress, was five-fold lower in hibernating compared with summer-active squirrels, an effect due primarily to elevated GSSG concentration in hibernators. During hibernation the total pool of GSH equivalents was lowest in squirrels undergoing arousal and highest in squirrels during interbout arousals. Hibernation decreased intestinal GSSG reductase activity by approximately 50%, but had no effect on activities of glutathione peroxidase or glucose-6-phosphate dehydrogenase. Within the hibernation season, expression of the stress protein HSP70 in intestinal mucosa was highest in squirrels entering torpor and early in a torpor bout, and lowest in squirrels arousing from torpor and during interbout euthermia. The results suggest that hibernation in ground squirrels is associated with a shift in intestinal GSH redox balance to a more oxidized state. Higher levels of HSP70 during the early phases of torpor may reflect induction of the stress response due to aberrations in protein folding or may be a mechanism to increase enterocyte tolerance to subsequent stress imposed by extended torpor or the arousal process.  相似文献   

8.
9.
We previously reported that overexpression of HSP25 delayed cell growth, increased the level of p21(waf), reduced the levels of cyclin D1, cyclin A and cdc2, and induced radioresistance in L929 cells. In this study, we demonstrated that HSP25 induced-radioresistance was abolished by transfection with plasmids containing antisense hsp25 cDNA. Extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. Furthermore, when control vector transfected cells were treated with PD98059, MEK inhibitor, they became resistant to radiation, suggesting that inhibition of ERK1/2 activities was essential for radioresistance in L929 cells. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bcl-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. Taken together, these results suggest that downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed cells.  相似文献   

10.
The addition of external GSSG at concentrations in the range 50-500 microM produces in isolated adult rat heart myocytes an increase of GSH level and only a slight increase of GSSG level. On the contrary, external GSH at the above same indicated concentrations did not change the cell glutathione pool. The pretreatment of the cells with diethylamaleate depleted the myocytes of glutathione and enhanced the GSSG-induced replenishment effect on GSH level. On the contrary, the addition of GSH did not increase the concentration of cell glutathione. The level of cell GSH in diethylmaleate-treated myocytes was not increased after 30 min of incubation with cysteine, or acetylcysteine. The GSSG induced-stimulation on GSH level was not inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. On the contrary, this stimulatory effect was inhibited by N, N-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of glutathione reductase, or partially, by the remotion of glucose from the incubation medium. These results support the idea that the isolated adult rat heart myocytes are able to utilize external GSSG in order to increase the intracellular glutathione pool, probably through the reduction of the imported GSSG to GSH.  相似文献   

11.
The effect of dietary selenium yeast, a source of organic selenium, on heat shock protein 70 (hsp70) responses, redox status, growth and feed utilization were evaluated either in enteropathogenic Escherichia coli-challenged (EPEC) or in heat-stressed (HS) male broiler chickens grown to 42 days of age. One day-old chicks in experiment 1 were challenged orally with EPEC (10(6) cfu/chicken on day 1 and boosted by water application on days 2, 3, and 4) and fed diets with or without selenium yeast. Body weight (BW), feed conversion ratio (FCR), and total mortality were determined at 42 days of age, and this was followed by collection of ileal tissue for the quantification of total glutathione (TGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and hsp70 in randomly selected chickens from each treatment. In experiment 2, male broiler chickens were fed diets with or without selenium yeast under a thermoneutral rearing condition. At four weeks of age, blood and hepatic tissue were collected from chickens maintained in the thermoneutral environment and from chickens subjected to HS (40 degrees C for 1 h) and analyzed for TGSH, GSH, GSSG, and hsp70. Selenium yeast improved BW, FCR, and decreased mortality in both control and EPEC-challenged chicks. Selenium yeast significantly attenuated hsp70 expression in EPEC-challenged chickens and in those subjected to HS. The EPEC challenge increased TGSH and GSSG levels and decreased GSH/GSSG ratio. However, GSSG level accumulated in chickens fed diets without selenium supplementation resulting in a lower GSH/GSSG ratio in the selenium yeast-fed group. Heat stress increased GSSG level and decreased GSH/GSSG ratio. Selenium yeast-fed groups maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio. The hsp70 response was significantly less in those chickens fed selenium yeast and challenged with either EPEC or HS than in those chickens given no supplemental selenium. The results of this study suggest that selenium yeast supplementation had imparted resistance to oxidative stress associated with enteric bacteria infection and to high temperature exposure. It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens.  相似文献   

12.
Characterization of Glutathione Uptake in Broad Bean Leaf Protoplasts   总被引:11,自引:2,他引:9       下载免费PDF全文
Transport of reduced glutathione (GSH) and oxidized glutathione (GSSG) was studied with broad bean (Vicia faba L.) leaf tissues and protoplasts. Protoplasts and leaf discs took up GSSG at a rate about twice the uptake rate of GSH. Detailed studies with protoplasts indicated that GSH and GSSG uptake exhibited the same sensitivity to the external pH and to various chemical reagents. GSH uptake was inhibited by GSSG and glutathione conjugates. GSSG uptake was inhibited by GSH and GS conjugates, and the uptake of metolachlor-GS was inhibited by GSSG. Various amino acids (L-glutamic acid, L-glutamine, L-cysteine, L-glycine, L-methionine) and peptides (glycine-glycine, glycine-glycine-glycine) affected neither the transport of GSH nor GSSG. Uptake kinetics indicate that GSH is taken up by a single saturable transporter, with an apparent Km of 0.4 mM, whereas GSSG uptake exhibits two saturable phases, with an apparent Km of 7 [mu]M and 3.7 mM. It is concluded that the plasma membrane of leaf cells contains a specific transport system for glutathione, which takes up GSSG and GS conjugates preferentially over GSH. Proton flux measurements and electrophysiological measurements indicate that GSH and GSSG are taken up with proton symport. However, a detailed analysis of these measurements suggests that the ion movements induced by GSSG differ from those induced by GSH.  相似文献   

13.
Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos to resume normal growth and development than embryos from dams with inadequate selenium nutrition.  相似文献   

14.
15.
Ageing of tomato seeds involves glutathione oxidation   总被引:2,自引:0,他引:2  
The effect of seed ageing on the oxidation of reduced glutathione (GSH) and the role of GSH oxidation in ageing-induced deterioration were studied in seeds of tomato ( Lycopersicon esculentum Mill. cv. Lerica, Moneymaker and Cromco). Both long-term storage at 15°C/30% relative humidity (RH) and artificial ageing at 20°C/75% RH, 30°C/45% RH and 60°C/45% RH resulted in a marked loss of GSH and a simultaneous, though not proportional, increase in its oxidized form GSSG. The glutathione thiol-disulfide status shifted towards a highly oxidized form, while the total glutathione pool decreased. The extent of GSH oxidation differed between ageing conditions and was not directly related to the extent of seed deterioration. Thiobarbituric acid-reactive substances did not increase in ageing tomato seeds, suggesting that lipid peroxidation did not take place. Hydration of seeds, either upon imbibition in water or by priming in an osmotic solution, resulted in a rapid decrease in GSSG, a shift of the glutathione redox couple to a mainly reduced status and an increase in the glutathione pool, in both control and aged seeds. The results indicate that, in tomato seeds, (1) seed ageing involves GSH oxidation into GSSG, which is indicative of oxidative stress, (2) ageing does not affect the GSSG reduction capacity upon subsequent imbibition, and (3) the lowered viability of aged seeds cannot directly be ascribed to the decreased GSH pool or To the highly oxidized glutathione redox status.  相似文献   

16.
17.
The reduced glutathione (GSH)/oxidized glutathione (GSSG) redox state is thought to function in signaling of detoxification gene expression, but also appears to be tightly regulated in cells under normal conditions. Thus it is not clear that the magnitude of change in response to physiologic stimuli is sufficient for a role in redox signaling under nontoxicologic conditions. The purpose of this study was to determine the change in 2GSH/GSSG redox during signaling of differentiation and increased detoxification enzyme activity in HT29 cells. We measured GSH, GSSG, cell volume, and cell pH, and we used the Nernst equation to determine the changes in redox potential Eh of the 2GSH/GSSG pool in response to the differentiating agent, sodium butyrate, and the detoxification enzyme inducer, benzyl isothiocyanate. Sodium butyrate caused a 60-mV oxidation (from -260 to -200 mV), an oxidation sufficient for a 100-fold change in protein dithiols:disulfide ratio. Benzyl isothiocyanate caused a 16-mV oxidation in control cells but a 40-mV oxidation (to -160 mV) in differentiated cells. Changes in GSH and mRNA for glutamate:cysteine ligase did not correlate with Eh; however, correlations were seen between Eh and glutathione S-transferase (GST) and nicotinamide adenine dinucleotide phosphate (NADPH):quinone reductase activities (N:QR). These results show that 2GSH/GSSG redox changes in response to physiologic stimuli such as differentiation and enzyme inducers are of a sufficient magnitude to control the activity of redox-sensitive proteins. This suggests that physiologic modulation of the 2GSH/GSSG redox poise could provide a fundamental parameter for the control of cell phenotype.  相似文献   

18.
Using cultured murine peritoneal macrophages, the change in redox ratio (oxidized/reduced glutathione) was studied at different incubation intervals (6, 12, 18 and 24 hr) with different concentrations (2.5, 5 and 7.5 microg/ml) of cholesterol and 7beta-hydroxycholesterol (7beta-OH), using fluorimeter. The changes in the levels of heat shock protein, hsp70 was determined using ELISA. Both cholesterol/7beta-OH caused a decrease in hsp70 protein levels at all the incubation intervals in dose dependent manner but the decrease was significantly higher with 7beta-OH. Treatment with 7beta-OH also resulted in significantly increased levels of oxidized glutathione (GSSG) and decreased reduced glutathione (GSH) while cholesterol showed no effect on GSSG levels. Moreover, GSH levels were lowered only at the highest concentration (7.5 microg/ml) at longer incubation intervals (18 and 24 hr) with cholesterol exposure. This altered the redox status in both cholesterol/7beta-OH treated macrophages. These results suggest that cholesterol and more likely 7beta-OH may exert their pro-atherogenic effects by lowering hsp70 protein production and inhibiting glutathione synthesis by macrophages present in the arterial wall.  相似文献   

19.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

20.
Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities, as well as malondialdehyde (MDA) and reduced glutathione (GSH) and oxidized glutathione (GSSG) contents, were determined during the growth of the unicellular marine alga Lingulodinium polyedrum (Stein) Dodge in batch‐cultures. CAT and APX activity peaks were detected at the beginning of algal exponential growth, although declining trends were subsequently identified in both enzymes, with a slight increase in CAT activity at the end of the experimental period. MDA content attained maximum values from day 0–3 and at the end of the experimental period (day 21), declining halfway from day 10–14. GSH and GSSG contents presented the highest values at the beginning of the growth curve, decreasing from day 3 onwards. Despite the depletion of the GSH pool, an upward trend was observed in the (GSH) (0.5 GSSG + GSH)?1 ratio, indicating that the L. polyedrum cells were able to maintain an increasing redox potential along exponential and linear growth phases in their efforts to prevent oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号