共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation of a functional hierarchy between mammalian and insect Hox/HOM genes. 总被引:5,自引:1,他引:5 下载免费PDF全文
We have generated several transgenic Drosophila strains containing different mouse Hox genes under heat shock control and studied how their generalized expression affects Drosophila larval patterns. We find that they have spatially restricted effects which correlate with their genetic order and expression pattern in the mouse; as they are expressed more posteriorly in the mouse, they have more extensive effects in Drosophila. The generalized expressions of Hoxd-8 and d-9 modify Drosophila anterior head segment(s), but have no effect in the rest of the body. Hoxd-10 expression affects head and thorax, but not the abdomen. Finally, Hoxd-11 alters head, thorax not the abdomen. Finally, Hoxd-11 alters head, thorax and abdomen. The developmental effect of the Hox genes consists of a homeotic transformation of the affected segment(s), which exhibit a 'ground' pattern similar to that obtained in the absence of homeotic information, suggesting that Hox genes are able to inactivate Drosophila homeotic genes, but do not specify a pattern of their own. A partial exception is Hoxd-11 which, even though it has a general suppressing effect, can also activate the resident Abdominal-B and empty spiracles genes in ectopic positions. Our results strongly suggest a general conservation of the functional hierarchy of homeotic genes that correlates with genetic order and expression patterns. 相似文献
2.
The isolation of Hox genes from two cnidarian groups, the Hydrozoa and Anthozoa, has sparked hypotheses on the early evolution of Hox genes and a conserved role for these genes for defining a main body axis in all metazoan animals. We have isolated the first five Hox genes, Scox-1 to Scox-5, from the third cnidarian class, the Scyphozoa. For all but one gene, we report full-length homeobox plus flanking sequences. Four of the five genes show close relationship to previously reported Cnox-1 genes from Hydrozoa and Anthozoa. One gene, Scox-2, is an unambiguous homologue of Cnox-2 genes known from Hydrozoa, Anthozoa, and also Placozoa. Based on sequence similarity and phylogenetic analyses of the homeobox and homeodomain sequences of known Hox genes from cnidarians, we suggest the presence of at least five distinct Hox gene families in this phylum, and conclude that the last common ancestor of the Recent cnidarian classes likely possessed a set of Hox genes representing three different families, the Cnox-1, Cnox-2, and Cnox-5 families. The data presented are consistent with the idea that multiple duplication events of genes have occurred within one family at the expense of conservation of the original set of genes, which represent the three ancestral Hox gene families. 相似文献
3.
Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. 总被引:11,自引:0,他引:11
H D Ryoo T Marty F Casares M Affolter R S Mann 《Development (Cambridge, England)》1999,126(22):5137-5148
To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA. 相似文献
4.
Homeobox genes located in the 5' part of the HoxA and HoxD complexes are required for proliferation of skeletal progenitor cells of the vertebrate limb. Specific combinations of gene products determine the length of the upper arm (genes belonging to groups 9 and 10), the lower arm (groups 10, 11 and 12) and the digits (groups 11, 12 and 13). In these different domains, individual gene products quantitatively contribute to an overall protein dose, with predominant roles for groups 11 and 13. Quantitative reduction in the gene dose in each set results in truncations of the corresponding anatomical regions. The physical order of the genes in the HoxA and HoxD complexes, as well as a unidirectional sequence in gene activation, allow for completion of the process in a precise order, which in turn makes possible the sequential outgrowth of the respective primordia. While the skeletal patterns of upper and lower limb are relatively stable throughout the tetrapods, more variation is seen in the digits. Molecular analysis of the underlying regulatory processes promises further exciting insights into the genetic control of development, pathology and the course of evolution. 相似文献
5.
SUMMARY Members of the TGF-β superfamily of signaling molecules are widespread in metazoans, but the evolutionary origin of particular subclasses of signaling mechanisms is poorly defined. The DPP/BMP class, for example, is implicated in dorsal-ventral patterning, neural patterning, and limb development. Here we report the presence of several components of a DPP/BMP-specific signal transduction cascade in a nonbilateral animal, the coral Acropora millepora . The discovery of these components, a putative type I receptor and two putative receptor-activated Smads, suggests that DPP/BMP signaling predates both dorsal-ventral pattern formation and limb development. We postulate that an ancestral role in neuroepithelial patterning may account for the high level of conservation between DPP/BMP signaling components found in this nonbilateral animal and the more complex triploblastic organisms of the arthropod and chordate phyla. 相似文献
6.
7.
Popodi E Raff RA 《BioEssays : news and reviews in molecular, cellular and developmental biology》2001,23(3):211-214
There is renewed interest in how the different body plans of extant phyla are related. This question has traditionally been addressed by comparisons between vertebrates and Drosophila. Fortunately, there is now increasing emphasis on animals representing other phyla. Pentamerally symmetric echinoderms are a bilaterian metazoan phylum whose members exhibit secondarily derived radial symmetry. Precisely how their radially symmetric body plan originated from a bilaterally symmetric ancestor is unknown, however, two recent papers address this subject. Peterson et al. propose a hypothesis on evolution of the anteroposterior axis in echinoderms, and Arenas-Mena et al. examine expression of five posterior Hox genes during development of the adult sea urchin. 相似文献
8.
Evidence from Drosophila suggests that Hox genes not only specify regional identity, but have the additional function of repressing antennal development within their normal domains. This is dramatically demonstrated by a series of Hox mutants in the red flour beetle, Tribolium castaneum, and is likely an ancient function of Hox genes in insects. 相似文献
9.
The role of Hox genes during vertebrate limb development 总被引:3,自引:0,他引:3
The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed. 相似文献
10.
"Hox cluster type" genes have sparked intriguing attempts to unite all metazoan animals by a shared pattern of expression and genomic organization of a specific set of regulatory genes. The basic idea, the zootype concept, claims the conservation of a specific set of "Hox cluster type genes" in all metazoan animals, i.e., in the basal diploblasts as well as in the derived triploblastic animals. Depending on the data used and the type of analysis performed, different opposing views have been taken on this idea. We review here the sum of data currently available in a total evidence analysis, which includes morphological and the most recent molecular data. This analysis highlights several problems with the idea of a simple "Hox cluster type" synapomorphy between the diploblastic and triploblastic animals and suggests that the "zootype differentiation" of the Hox cluster most likely is an invention of the triploblasts. The view presented is compatible with the idea that early Hox gene evolution started with a single proto-Hox (possibly a paraHox) gene. J. Exp. Zool. (Mol. Dev. Evol.) 291:169-174, 2001. 相似文献
11.
Deschamps J 《Current opinion in genetics & development》2007,17(5):422-427
Genes from the Hox family are involved in the common task of providing nascent embryonic tissues with their positional identity. They are organised in clusters in most species. Mouse Hox genes are regulated in part by gene-proximal regulatory elements, but owe several of their essential properties to the use of global regulatory elements located outside the complexes. The clustered Hox genes in that sense behave as a single large locus. Genomic and sequence data from different animal species suggest that a concerted regulation of the Hox clusters, inherently coupled to their patterning properties, originated early during evolution and pre-figured the temporal colinearity of expression of vertebrate Hox genes. In addition, vertebrates have recruited novel global mechanisms to control the expression of linear subsets of Hox genes in specific embryonic structures. Several of such novel global regulatory circuits have recently been characterised at the molecular genetic level in the mouse. 相似文献
12.
Evolution of the vertebrate Hox homeobox genes. 总被引:10,自引:0,他引:10
R Krumlauf 《BioEssays : news and reviews in molecular, cellular and developmental biology》1992,14(4):245-252
13.
Ferner DE 《基因组蛋白质组与生物信息学报(英文版)》2011,9(3):63-64
The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2),providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom. 相似文献
14.
15.
16.
The eyespot patterns found on the wings of nymphalid butterflies are novel traits that originated first in hindwings and subsequently in forewings, suggesting that eyespot development might be dependent on Hox genes. Hindwings differ from forewings in the expression of Ultrabithorax (Ubx), but the function of this Hox gene in eyespot development as well as that of another Hox gene Antennapedia (Antp), expressed specifically in eyespots centers on both wings, are still unclear. We used CRISPR-Cas9 to target both genes in Bicyclus anynana butterflies. We show that Antp is essential for eyespot development on the forewings and for the differentiation of white centers and larger eyespots on hindwings, whereas Ubx is essential not only for the development of at least some hindwing eyespots but also for repressing the size of other eyespots. Additionally, Antp is essential for the development of silver scales in male wings. In summary, Antp and Ubx, in addition to their conserved roles in modifying serially homologous segments along the anterior–posterior axis of insects, have acquired a novel role in promoting the development of a new set of serial homologs, the eyespot patterns, in both forewings (Antp) and hindwings (Antp and Ubx) of B. anynana butterflies. We propose that the peculiar pattern of eyespot origins on hindwings first, followed by forewings, could be due to an initial co-option of Ubx into eyespot development followed by a later, partially redundant, co-option of Antp into the same network. 相似文献
17.
18.
Peterson KJ 《Molecular phylogenetics and evolution》2004,31(3):1208-1215
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria. 相似文献
19.
Annelida is a lophotrochozoan phylum whose members have a high degree of diversity in body plan morphology, reproductive strategies and ecological niches among others.Of the two traditional classes pertaining to the phylum Annelida (Polychaete and Clitellata), the structure and function of the Hox genes has not been clearly defined within the Oligochaeta class. Using a PCR-based survey, we were able to identify five new Hox genes from the earthworm Perionyx excavatus: a Hox3 gene (Pex-Hox3b), two Dfd genes (Pex-Lox6 and Pex-Lox18), and two posterior genes (Pex-post1 and -post2a). Our result suggests that the eleven earthworm Hox genes contain at least four paralog groups (PG) that have duplicated. We found the clitellates-diagnostic signature residues and annelid signature motif. Also, we show by semi-quantitative RT-PCR that duplicated Hox gene orthologs are differentially expressed in six different anterior-posterior body regions. These results provide essential data for comparative evolution of the Hox cluster within the Annelida. 相似文献
20.
Xi‐Ping Dong Kelly Vargas John A. Cunningham Huaqiao Zhang Teng Liu Fang Chen Jianbo Liu Stefan Bengtson Philip C. J. Donoghue 《Palaeontology》2016,59(3):387-407
Fossilized embryos afford direct insight into the pattern of development in extinct organisms, providing unique tests of hypotheses of developmental evolution based in comparative embryology. However, these fossils can only be effective in this role if their embryology and phylogenetic affinities are well constrained. We elucidate and interpret the development of Olivooides from embryonic and adult stages and use these data to discriminate among competing interpretations of their anatomy and affinity. The embryology of Olivooides is principally characterized by the development of an ornamented periderm that initially forms externally and is subsequently formed internally, released at the aperture, facilitating the direct development of the embryo into an adult theca. Internal anatomy is known only from embryonic stages, revealing two internal tissue layers, the innermost of which is developed into three transversally arranged walls that partly divide the lumen into an abapertural region, interpreted as the gut of a polyp, and an adapertural region that includes structures that resemble the peridermal teeth of coronate scyphozoans. The anatomy and pattern of development exhibited by Olivooides appears common to the other known genus of olivooid, Quadrapyrgites, which differs in its tetraradial, as opposed to pentaradial symmetry. We reject previous interpretations of the olivooids as cycloneuralians, principally on the grounds that they lack a through gut and introvert, in embryo and adult. Instead we consider the affinities of the olivooids among medusozoan cnidarians; our phylogenetic analysis supports their classification as total‐group Coronata, within crown‐Scyphozoa. Olivooides and Quadrapyrgites evidence a broader range of life history strategies and bodyplan symmetry than is otherwise commonly represented in extant Scyphozoa specifically, and Cnidaria more generally. 相似文献