首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophysiology is defined as the study of variation in physiological traits-including physiological trait flexibility-over large geographical and temporal scales, and the ecological implications of this variation. A classic example of a macrophysiological trend is the one emerging from the climatic variability hypothesis, which states that as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should be more plastic than individuals inhabiting lower latitudes. In this context, we evaluate the correlation between absolute metabolic scope during cold exposure (an instantaneous measure of metabolic flexibility) and different geographic and climatic variables for 48 rodent species. Conventional and phylogenetic informed analyses indicated a positive correlation between metabolic scope and geographic latitude. These findings, together with previous reports on latitudinal pattern in phenotypic flexibility, suggest that an increase in physiological flexibility with latitude may hold for many phenotypic traits.  相似文献   

2.
Several studies published over the last years suggest that the ability of many species to cope with global change will be closely related to the current amount of plasticity for fitness-related traits. Thus, disentangling general patterns in phenotypic flexibility, which could be then included in models aimed to predict changes in species distribution, represent a central goal in the current ecological agenda. The climatic variability hypothesis (CVH) could be considered a timely and promising hypothesis since it provides an explicit link between climatic and geographic variables and phenotypic plasticity. Specifically, the CVH states that as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should present greater levels of phenotypic flexibility. Within this framework, here we evaluate the existence of latitudinal patterns in fat body size flexibility—estimated as the difference between maximum and minimum fat body size values observed throughout a year—for 59 lizard species, comprising the first evaluation of the CVH for a trait, other than thermic or metabolic characters, in ectothermic species. Conventional and phylogenetic analyses indicated a positive relationship between fat body size flexibility and latitude, and also between flexibility and temperature variability indexes. Together with previous findings our results suggest that: (1) latitudinal pattern for fitness-related traits, other than thermal characters, are beginning to emerge; (2) latitude is usually a better predictor of phenotypic plasticity than putative climatic variables; (3) hemispheric differences in climatic variability appears to be correlated with hemispheric differences in phenotypic plasticity.  相似文献   

3.
Flexibility of digestive features can be understood considering the benefits of digestion, which links animal foraging to metabolizable energy and nutrient gain, and its costs, which are partly indexed by digestive tract tissue mass, one of the most expensive to maintain in terms of energy and protein metabolism. In this article, we applied a meta-analytical approach to current data on rodents' small intestine length flexibility to evaluate the climatic variability hypothesis (CVH). This hypothesis states the following: (1) as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should be more flexible to persist at a site; (2) the greater phenotypic flexibility allows species to occupy more habitats and to become more widely distributed. We compiled data from 25 articles, which provided a total of 86 estimations of flexibility involving 20 rodent species. Consistent with CVH predictions, we found a positive correlation between small intestine length flexibility and latitude and between small intestine length flexibility and the number of habitats occupied by different species. When seen from the perspective of digestive physiology, our analysis is an important piece of evidence on the adaptive value of digestive flexibility in small mammals.  相似文献   

4.
Phenotypic flexibility can be an important determinant of fitness in variable environments. The climatic variability hypothesis (CVH) predicts that phenotypic flexibility in thermoregulatory traits will be greater in temperate species than tropical species as a means of coping with increased temperature seasonality at higher latitudes. However, support for the CVH has been mixed, and recent studies suggest that tropical birds are capable of substantial phenotypic flexibility. To test the generality of the CVH, we used flow‐through respirometry to quantify seasonal acclimatization in thermoregulatory traits in suites of temperate (n = 6) and tropical (n = 41) birds. We used W/S ratios (winter/summer trait values) to quantify the direction and magnitude of seasonal change (W/S ratio of 1 means no seasonal change). Temperate species exhibited coordinated changes in thermoregulatory traits in winter, including large increases in thermoneutral zone (TNZ) breadth and reductions in heat loss below the lower limit of the TNZ. Conversely, tropical species exhibited idiosyncratic seasonal thermoregulatory responses, and mean W/S ratios were close to 1 for all traits, indicative of little seasonal change and consistent with predictions of the CVH. Nevertheless, mean W/S ratios did not differ significantly between temperate and tropical species for either Mb or BMR, demonstrating that tropical birds can also exhibit substantial thermoregulatory flexibility. Our results highlight the need for complementary acclimation experiments to determine if latitudinal differences in seasonal acclimatization are due to inherent differences in capacity for flexibility.  相似文献   

5.
Intraspecific variation in physiological traits and the standard metabolic rate (SMR) is common in widely distributed ectotherms since populations at contrasting latitudes experiences different thermal conditions. The climatic variability hypothesis (CVH) states that populations at higher latitudes presents higher acclimation capacity than those at lower latitudes, given the wider range of climatic variability they experience. The endemic four-eyed frog, Pleurodema thaul is widely distributed in Chile. We examined the variation in maximum and minimum critical temperatures (CTmax and CTmin), preferred temperature (TPref), SMR and their acclimatory capacity in two populations from the northern and center of its distribution. All the traits are higher in the warmer population. The capacity for acclimation varies between traits and, with the exception of CTmax and TPref, it is similar between populations. This pattern could be explained by the higher daily thermal variability in desert environments, that increases plasticity to the levels found in the high latitude population. However, we found low acclimatory capacity in all physiological traits, of only about 3% for CTmin, 10% for CTmax and TPref, and 1% for SMR. Thus, despite the fact that Pleurodema thaul possess some ability to adjust thermal tolerances in response to changing thermal conditions, this acclimatory capacity seems to be unable to prevent substantial buffering when body temperatures rise. The low acclimatory capacity found for P. thaul suggests that this species use behavioral rather than physiological adjustments to compensate for environmental variation, by exploiting available micro-environments with more stable thermal conditions.  相似文献   

6.
Phenotypic plasticity has been suggested as the main mechanism for species persistence under a global change scenario, and also as one of the main mechanisms that alien species use to tolerate and invade broad geographic areas. However, contrasting with this central role of phenotypic plasticity, standard models aimed to predict the effect of climatic change on species distributions do not allow for the inclusion of differences in plastic responses among populations. In this context, the climatic variability hypothesis (CVH), which states that higher thermal variability at higher latitudes should determine an increase in phenotypic plasticity with latitude, could be considered a timely and promising hypothesis. Accordingly, in this study we evaluated, for the first time in a plant species (Taraxacum officinale), the prediction of the CVH. Specifically, we measured plastic responses at different environmental temperatures (5 and 20°C), in several ecophysiological and fitness-related traits for five populations distributed along a broad latitudinal gradient. Overall, phenotypic plasticity increased with latitude for all six traits analyzed, and mean trait values increased with latitude at both experimental temperatures, the change was noticeably greater at 20° than at 5°C. Our results suggest that the positive relationship found between phenotypic plasticity and geographic latitude could have very deep implications on future species persistence and invasion processes under a scenario of climate change.  相似文献   

7.
The chromosomal polymorphism of seven Mediterranean populations of Drosophila subobscura has been compared with that of the same populations collected 26 to 35 years ago. Significant latitudinal clines for the frequencies of A(ST), E(ST), O(ST). and U(ST) chromosomal arrangements have been detected in the old and new samples. Standard gene arrangements are frequent in the north and decrease in frequency towards the south. Significant negative regression coefficients between latitude and transformed frequency have also been observed for the more frequent nonstandard gene arrangements. The pattern of the clines is practically the same in the old and new collections. Furthermore, the frequencies of gene arrangements of all chromosomes have changed significantly during this period in a systematic way: an increase in the frequency of those arrangements typical of southern latitudes and a decrease for those more common in northern latitudes is observed in all populations. These changes could be due to climatic factors that are correlated with latitude, making the chromosomal composition of this species more "southern.'  相似文献   

8.
Metabolic variability across latitudinal populations of gammarid amphipods was examined in the summer by determining whole-animal rates of oxygen uptake (M(o)?) in four species with overlapping distribution patterns in the northeast Atlantic and Arctic oceans. Comparisons were made between an arctic/boreal species, Gammarus setosus, a subarctic/boreal species, Gammarus oceanicus, a boreal/temperate species, Gammarus duebeni duebeni, and a temperate species, Gammarus locusta. Measurements included acclimatized M(o)? in all four species and M(o)? after acclimation to 10°C in two populations of G. oceanicus and G. locusta. In G. oceanicus, acclimatized M(o)? declined with latitude (13° to 5°C) so that metabolic rates were lower in subarctic (79°N) relative to temperate (58°N) populations and similar to the values in G. setosus at 79°N. Consequently, there was no evidence for metabolic rate compensation in the colder-water, high-latitude populations in the summer. Further examination of the specific effects of temperature revealed similarities in M(o)? between populations of G. oceanicus acclimated at 10°C and similarities in thermal sensitivity (Q(10)) and activation energies (E(a)) on exposure to acute temperature change. In sharp contrast, there was no variation in summer acclimatized M(o)? with latitude in either G. d. duebeni between 48° and 70°N or G. locusta between 38° and 53°N. Instead, the two species maintained relatively high metabolic rates across latitudes, which were associated in G. locusta with differences in M(o)? and with Q(10) and E(a) values in amphipods acclimated at 10°C. The ability to compensate metabolic rate with latitude in the summer suggests greater metabolic flexibility, which predicts a greater capacity for survival during climate change of the temperate/boreal over the subarctic and arctic gammarid species.  相似文献   

9.
Understanding the relationship between geographic range limits and physiological traits of vector species is under increasing demand to predict the potential effects of global warming, not only in terms of geographic distribution of vector species but also in terms of the risk of disease transmission. Like in many other insect species, the geographical distribution of Chagas’ disease vectors is affected by temperature. This study examines, for the first time, the relationship between the limits of geographic distribution and thermo‐tolerance of the most important vectors of Chagas disease, Triatoma infestans in southern South America and Rhodnius prolixus in northern South America and Central America, to test the climatic variability hypothesis (CVH). We applied species distribution modeling (SDM) using bioclimatic variables and identified the most important limiting factors of the habitat suitability. Then, we measured and compared: the critical thermal maximum (CTmax) and the upper lethal temperature (ULT) (measured by thermo‐limit respirometry), chilled coma recovery (i.e. the time to recovery from 4 h at 0°C) and the critical thermal minimum (CTmin). For both species the minimum temperature of the coldest month was the most important abiotic factor restricting their geographic distribution. By taking a correlative approach and testing predictions with thermal tolerance traits, it was possible to explain the southern limit distribution for both species in terms of physiological constraints. The greater temperature tolerance of T. infestans compared to R. prolixus supports the CVH.  相似文献   

10.
Maximum and minimum metabolic rates in birds are flexible traits and such flexibility can be advantageous in variable climates. The climatic variability hypothesis (CVH) posits that more variable climates should result in greater metabolic flexibility for geographically distinct populations. Whether the CVH applies to sympatric species occupying microclimates differing in variability is unknown. Microclimates of open habitats are likely more variable than those of sheltered habitats. If the CVH extends to microclimates, we expect birds from open habitats to show greater flexibility than those from sheltered habitats. To test this extension of the CVH, we compared seasonal variation in microclimates and metabolic rates for sympatric horned larks Eremophila alpestris, which occupy open habitats, and house sparrows Passer domesticus, which occupy sheltered habitats. We measured operative temperature (Te, an integrative measure of the thermal environment), summit metabolic rate (Msum, maximal cold-induced metabolic rate), and basal metabolic rate (BMR, minimal maintenance metabolic rate) in summer and winter. For both winter and summer, daily minimum Te was similar between open and sheltered habitats but maximum Te was higher for open habitats. Winter microclimates, however, were colder for open than for sheltered habitats after accounting for convective differences. Both species increased Msum in winter, but seasonal Msum flexibility was greater for larks (43%) than for sparrows (31%). Winter increases in BMR were 92.5% and 11% for larks and sparrows, respectively, with only the former attaining statistical significance. Moreover, species * season interactions in general linear models for whole-organism metabolic rates were significant for BMR and showed a similar, although not significant, pattern for Msum, with greater seasonal metabolic flexibility in horned larks than in house sparrows. These results suggest that extending the CVH to sympatric bird species occupying different microclimates may be valid.  相似文献   

11.
Polyploidy in combination with parthenogenesis offers advantages for plasticity and the evolution of a broad ecological tolerance of species. Therefore, a positive correlation between the level of ploidy and increasing latitude as a surrogate for environmental harshness has been suggested. Such a positive correlation is well documented for plants, but examples for animals are still rare. Species of flatworms (Platyhelminthes) are widely distributed, show a remarkably wide range of chromosome numbers, and offer therefore good model systems to study the geographical distribution of chromosome numbers. We analyzed published data on counts of chromosome numbers and geographical information of three flatworm “species” (Phagocata vitta, Polycelis felina and Crenobia alpina) sampled across Europe (220 populations). We used the mean chromosome number across individuals of a population as a proxy for the level of ploidy within populations, and we tested for relationships of this variable with latitude, mode of reproduction (sexual, asexual or both) and environmental variables (annual mean temperature, mean diurnal temperature range, mean precipitation and net primary production). The mean chromosome numbers of all three species increased with latitude and decreased with mean annual temperature. For two species, chromosome number also decreased with mean precipitation and net primary production. Furthermore, high chromosome numbers within species were accompanied with a loss of sexual reproduction. The variation of chromosome numbers within individuals of two of the three species increased with latitude. Our results support the hypothesis that polyploid lineages are able to cope with harsh climatic conditions at high latitudes. Furthermore, we propose that asexual reproduction in populations with high levels of polyploidization stabilizes hybridization events. Chromosomal irregularities within individuals tend to become more frequent at the extreme environments of high latitudes, presumably because of mitotic errors and downsizing of the genome.  相似文献   

12.
Ectotherms from higher latitudes can generally perform over broader temperature ranges than tropical ectotherms. This pattern is thought to reflect trends in temperature variability: tropical ectotherms evolve to be ‘thermal specialists’ because their environment is thermally stable. However, the tropics are also hotter, and most physiological rates increase exponentially with temperature. Using a dataset spanning diverse ectotherms, we show that the temperature ranges ectotherms tolerate (the difference between lower and upper critical temperatures, and between optimum and upper critical temperatures) generally represents the same range of equivalent biological rates (e.g. metabolism) for cool‐ and warm‐adapted species, and independent of latitude or elevation. This suggests that geographical trends in temperature variability may not be the ultimate mechanism underlying latitudinal and elevational trends in thermal tolerance. Rather, we propose that tropical ectotherms can perform over a narrower range of temperatures than species from higher latitudes because the tropics are hotter.  相似文献   

13.
We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic-variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards.  相似文献   

14.
Many studies, largely from cool‐temperate latitudes, have investigated the relationship between the timing of biological events and changes in climatic conditions during the past few decades. Relatively little is known about the response of plants and animals at lower latitudes. Here we show that the average first spring flight of 23 butterfly species in the Central Valley of California has advanced to an earlier date over the past 31 years. Among the species that have appeared significantly earlier, the average shift is 24 days. Climatic conditions (largely winter temperature and precipitation) are found to explain a large part of the variation in changing date of first flight. These results suggest a strong ecological influence of changing climatic conditions on a suite of animals from a mid‐latitude, Mediterranean climate.  相似文献   

15.
The extent to which the latitudinal gradient in species richness may be paralleled by a similar gradient of increasing functional or phylogenetic diversity is a matter of controversy. We evaluated whether taxonomic richness (TR) is informative in terms of ecological diversity (ED, an approximation to functional diversity) and phylogenetic diversity (AvPD) using data on 531 mammal species representing South American old autochthonous (marsupials, xenarthrans), mid-Cenozoic immigrants (hystricognaths, primates) and newcomers (carnivorans, artiodactyls). If closely related species are ecologically more similar than distantly related species, AvPD will be a strong predictor of ED; however, lower ED than predicted from AvPD may be due to species retaining most of their ancestral characters, suggesting niche conservatism. This pattern could occur in tropical rainforests for taxa of tropical affinity (old autochthonous and mid-Cenozoic immigrants) and in open and arid habitats for newcomers. In contrast, higher ED than expected from AvPD could occur, possibly in association with niche evolution, in arid and open habitats for taxa of tropical affinity and in forested habitats for newcomers. We found that TR was a poor predictor of ED and AvPD. After controlling for TR, there was considerable variability in the extent to which AvPD accounted for ED. Taxa of tropical affinity did not support the prediction of ED deficit within tropical rainforests, rather, they showed a mosaic of regions with an excess of ED interspersed with zones of ED deficit within the tropics; newcomers showed ED deficit in arid and open regions. Some taxa of tropical affinity showed excess of ED in tropical desert areas (hystricognaths) or temperate semideserts (xenarthrans); newcomers showed excess of ED at cold-temperate latitudes in the Northern Hemisphere. This result suggests that extreme climatic conditions at both temperate and tropical latitudes may have promoted niche evolution in mammals.  相似文献   

16.
Aim One of the mechanisms proposed to explain the tendency for geographical range size to increase from the equator to the poles, known as the Rapoport effect, is the climatic variability hypothesis. It states that, towards higher latitudes, greater seasonal climatic variability is the most important pressure that selectively promotes greater general climatic tolerance of species, and therefore also more extensive species ranges. In order to test this hypothesis, we explore the influence of climate, area and biome diversity on the latitudinal gradient of climatic specialization. Location The study used the large mammal assemblage from Africa. Methods The degree of climatic specialization of African large mammals (Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota) is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. We studied the influence of 11 climatic and biogeographical predictors in the latitudinal pattern of biomic specialization. Stepwise multiple regressions were used to identify the strongest predictors of biomic specialization in Africa and, separately, in both continental hemispheres. We also studied differences among taxonomical groups (primates, carnivores and artiodactyls). We used correlograms generated using Moran's I coefficients to control for spatial autocorrelation in all these analyses. Results Average BSI values for successive 1°‐latitude bands generally decline towards the equator and temperature variability emerged as the most predictive factor in the regression model for the whole continent, thus supporting the climatic variability hypothesis. Nevertheless, there are differences between hemispheres and among taxa. While temperature variability is the most important predictor of latitudinal variability in biomic specialization in most of the regression models for the northern hemisphere, continental area for each latitudinal band is the best predictor in all the regression models in the southern hemisphere. Main conclusions It appears that similar patterns in latitudinal variation in average BSI may be caused by different factors in the two hemispheres. We suggest that the strong north–south geographical asymmetry of Africa, which influences its biogeographical structure, and the presence of land connections with Eurasia in the northern hemisphere are responsible for the observed patterns. Our data illustrate the influence of continental biogeographical structure and history on macroecological patterns.  相似文献   

17.
Pleistocene climatic oscillations were a major force shaping genetic variability in many taxa. We analyse the relative effects of the ice ages across a latitudinal gradient in the Western Mediterranean region, testing two main predictions: (i) species with historical distributions in northern latitudes should have experienced greater loss of suitable habitat, resulting in higher extinction of historical lineages than species distributed in southern latitudes, where the effects of the ice ages were not as drastic. This would be reflected in the observation of lower diversity and number of differentiated lineages in northern areas. (ii) a signature of demographic expansion following the climate amelioration should be obvious in northern species, whereas in the south evidence of long-term effective population size stability should be observed. We used as models three species of wall lizards (Podarcis bocagei, Podarcis carbonelli and Podarcis vaucheri) that replace each other along the study area. We investigated the patterns of mitochondrial DNA diversity and subdivision and obtained demographic parameter estimates for each species. Our results suggest that P. bocagei, the northernmost species, bears low genetic diversity, a shallow coalescent history and marks of a demographic expansion. In contrast, P. vaucheri, the species with a southernmost distribution, shows deeper coalescence events, complex geographical substructure and no evidence for population growth. The species with an intermediate distribution, P. carbonelli, shows average levels of diversity, substructure and population growth. Taken together, these results conform to our main predictions and are explained by a differential influence of the ice ages on distinct latitudes.  相似文献   

18.
《Journal of Asia》2021,24(4):1270-1274
Many ladybird species are known to have an elytral colour polymorphism, which indicates geographical variation. The ladybird beetle Cheilomenes sexmaculata (Fabricius) exhibits elytral colour polymorphism and has expanded its distribution from 33°N to 36°N in Japan over 100 years since 1900. The mitochondrial COI gene haplotypes were integrated into two haplotype groups, with one group existing at higher frequencies in lower latitudes, the other group appearing at higher frequencies in higher latitudes. In addition, the dark morph types of this species increase with latitude, whereas the light types appear at higher relative frequencies in lower latitudes.In the present study, we first determined the morph types of individuals and examined the mitochondrial DNA COI gene. Second, we investigated the relationship between the genetic population structure based on the mitochondrial DNA COI gene and the morph types’ geographical variation. Results indicated that the mtCOI genetic structure was associated with the morph types by latitude; specifically, the haplotype group existing at higher frequencies in lower latitudes tended to be light morph types. In contrast, the haplotype dominant in higher latitudes more frequently exhibited dark morph types, indicating that dark morph types in the higher latitude genetic group may have led the distributional expansion toward higher latitudes since 1900 rather than the lower latitude light morph types.  相似文献   

19.
Aim This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location East Asia from the Arctic to tropical regions, an area crossing over 50° of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods East Asia is divided into forty‐five geographical regions. Based on the similarity of their world‐wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50°‐long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10°. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty‐five regional floras. Results Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi‐Pacific tropical, palaeotropical, tropical Asia–tropical Australia, tropical Asia–tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20°N and for c. 0% at latitude 55–60°N. In contrast, temperate genera (including holarctic, eastern Asia–North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55–60°N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55–60°N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions The large‐scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.  相似文献   

20.
Global analysis of thermal tolerance and latitude in ectotherms   总被引:1,自引:0,他引:1  
A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号