首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Die Region des Nucleus supraopticus der Maus wurde elektronenmikroskopisch untersucht. Folgende Ergebnisse wurden erzielt:Die neurosekretorischen Zellen sind durch einen stark entwickelten Golgi-Apparat und durch osmiophile Granula in seiner Lumina charakterisiert. Die Ansammlungen dieser Granula entsprechen wahrscheinlich den lichtmikroskopisch sichtbaren Neurosekretgranula.Die Granula sind elliptoid bis ovoid gestaltet und durch eine zarte Grenzmembran gegen das Neuroplasma abgegrenzt. Man kann zwei Arten von Granula, kleinere (1. Typ) und größere (2. Typ), unterscheiden. Die kleineren Granula besitzen Durchmesser von 1000–2000 Å. Zwischen ihrem Zentrum und ihrer Grenzmembran befindet sich meistens eine helle Zone. Die größeren Granula haben Durchmesser von 4000–6000 Å; ihr Inhalt wird von der Grenzmembran eng umschlossen. Zwischen beiden Granula besteht kein Übergang. Außer diesen osmiophilen Granula sieht man im Golgi-Feld multivesicular bodies, wenn auch in geringer Zahl.Die kleineren Granula sind ähnlich strukturiert und geformt wie die Golgi-Granula. Vermutlich stehen beide Gebilde zueinander in inniger genetischer Beziehung. Es konnte nicht entschieden werden, ob die größeren Granula (2. Typ) aus multivesicular bodies oder aus anderen Organellen hervorgehen.In den neurosekretorischen Zellen treten vorwiegend kugelige oder stabförmige Mitochondrien auf. Sie kommen im Perikaryon und im Fortsatz vor, sind jedoch im Golgi-Feld besonders reichlich angehäuft. Der Zelleib — ausgenommen das Golgi-Feld — ist mit Ergastoplasma gefüllt, dessen sackartig erweiterte Räume keine Sekretgranula enthalten.In seltenen Fällen treten Zentralkörperchen im Golgi-Feld und im peripheren Teil des Zelleibes auf. Im Neuroplasma des Fortsatzes befinden sich kleine osmiophile Granula mit Durchmesser 1000 Å bis zu 2000 Å. Sie ähneln den im Hinterlappen vorkommenden Elementargranula (Bargmann), andererseits den Granula des 1. Typs. Dagegen sind die den Granula des 2. Typs vergleichbaren Gebilde im Neuroplasma des Fortsatzes niemals zu finden.Die Kapillaren im Kerngebiet sind von einer Basalmembran umgeben, deren Dicke etwa 700 Å beträgt. An der Außenfläche der Basalmembran setzen die neurosekretorischen Zellen und ihre Fortsätze unmittelbar an. Eine poröse Bauweise des Endothels wurde nicht nachgewiesen.In den auf der Basalmembran fußenden Nervenendigungen sind keine oder nur wenige Sekretgranula festzustellen. Die Hauptaufgabe der Kapillaren des Kerngebietes dürfte daher nicht in der Aufnahme des Neurosekrets bestehen.  相似文献   

2.
Zusammenfassung Es werden in großen Zügen die Verteilungsmuster der unspezifischen alkalischen und sauren Phosphatase und der spezifischen Phosphatasen ATPase und 5-Nucleotidase (AMPase) im Meerschweinchengehirn beschrieben. Während die vorwiegend im Cytoplasma vorkommende saure Phosphatase zur Enzymausrüstung jeder Nervenzelle gehört, gibt es nur wenige Kerngebiete, die nennenswerte Mengen alkalischer Phosphatase enthalten. Dazu gehören der Nucl. habenulae medialis, der von ihm ausgehende Tractus habenulo-peduncularis und die im vorderen Hypothalamus gelegenen Callejaschen Inseln. Der größte Teil der im Gehirn zu findenden alkalischen Phosphatase ist in den Kapillaren lokalisiert. Die ATPase ist ein ausgesprochenes Neuropilenzym und findet sich besonders in dendritenreichen Regionen. In dieser Hinsicht ähnelt ihr Verteilungsmuster besonders im Telencephalon den DPN- und TPN-abhängigen Dehydrogenasen. In vielen Kerngebieten des Metencephalon enthält jedoch das Nervenzellcytoplasma wesentlich mehr Dehydrogenasen. Auch im Telencephalon besteht keine direkte Parallelität der Verteilungsmuster. So läßt sich z. B. im dehydrogenasereichen Ependym keine ATPase nachweisen, während die ATPase-reiche subependymäre Gliaschicht nicht auffallend viel Dehydrogenasen enthält. — Die 5-Nucleotidase ist sowohl im Neuropil und in den Zellen der grauen Substanz als auch in Teilen der weißen Substanz reichlich vorhanden.Die Untersuchungen wurden mit technischer Hilfe von Fräulein E. Jakschas durchgeführt, wofür wir ihr vielmals danken.  相似文献   

3.
Zusammenfassung Im Myokard können zwei Typen der Innervation beobachtet werden. In den Vorhöfen und den Papillarmuskeln bilden die feineren präterminalen Verzweigungen der Nerven ein von den Gefäßen unabhängiges Grundgeflecht. In der Kammermuskulatur lösen sich von den Gefäßen meist nur die intrasyncytialen Endverzweigungen (Grundplexus) der Nerven.Die intrasyncytialen Endverzweigungen der Herznerven degenerieren sekundär auf typische Weise nach Unterbrechung der zum Herzen führenden Nervenbahnen. Die Degeneration der imSchwannschen Leitgewebe befindlichen Nervenelemente spricht gegen die neueren Anschauungen über die angeblich syncytiale Natur der vegetativen Nerven, wenigstens was ihre Endausbreitung anbetrifft. Die Fortsätze der sympathischen Nervenzellen bleiben auch in demSchwannschen Syncytium unabhängige Axonen, die nach Abtrennung von ihrer Ursprungszelle unabhängig von den mit ihnen im gleichen Syncytium verlaufenden Fasern anderen Ursprunges einer sekundären Degeneration anheimfallen.Mit Hilfe der Degenerationsmethode können die Fasern verschiedenen Ursprunges auch in ihren letzten Verzweigungen voneinander differenziert werden. Es konnte erwiesen werden, daß sowohl die Fasern der beiderseitigen sympathischen cervicothoracalen Ganglien als auch die der zum Vagussystem gehörenden Herzganglien und die aus den Vagus- und den Intervertebralganglien der unteren Cervicalsegmente stammenden sensorischen Fasern in dem gleichenSchwannschen Syncytium unmittelbar nebeneinander verlaufen können. Somit wird die Bedeutung des kernhaltigen Endplexus (Grundplexus) als eines eigenen sympathischen oder vegetativen Endapparates hinfällig. DasSchwannsche Leitgewebe ist nichts weiter als die wahrscheinlich präterminale Hülle der Nervenfasern verschiedensten Ursprunges und verschiedener Funktion.Weitaus der größte Teil der Nerven des Myokards kommen aus den beiderseitigen Ganglia stellaria. Das linksseitige Ganglion versorgt vornehmlich die linke und hintere Fläche der Herzkammern und die Gegend der Herzspitze. Das rechtsseitige versorgt die vordere Fläche der Herzkammern, das Kammerseptum und den vorderen linken Papillarmuskel. Die Innervationsgebiete überdecken sich jedoch weitgehend.Die Fortsätze der intramuralen Ganglienzellen versorgen alle Teile des Herzens gleichmäßig. Ihre Fasern sind morphologisch nicht charakterisiert. Sensorische Fasern erhält das Myokard vor allem aus dem Nervus vagus und aus den unteren cervicalen Intervertebralganglien, die dem Herzen durch den Nervus vertebralis über das Ganglion stellare zugeführt werden. Die Fasern verschiedener Funktion und verschiedenen Ursprunges sind morphologisch nicht gekennzeichnet und nur durch Degenerations-untersuchungen voneinander zu isolieren.Nervenendigungen konnten im Myokard allerdings den Nervenfasern gegenüber in unverhältnismäßig geringer Zahl vorgefunden werden. Es sind zum Teil Seitenzweige der imSchwannschen Leitgewebe verlaufenden Nervenfasern.  相似文献   

4.
Zusammenfassung Bei 122 Ratten, 21 Meerschweinchen, 28 Hunden und 18 Menschen wurde die Entwicklung der neurosekretorischen Kerngebiete und der Neurohypophyse im Laufe des Lebens untersucht.Die Ganglienzellen des Nucleus supraopticus und paraventricularis sind in der ersten Zeit noch sehr cytoplasmaarm, ihre kleinen Kerne besitzen einen schwach ausgeprägten Nucleolus. Zellfortsätze sind nicht sichtbar. Im Laufe der ersten Lebenszeit, beim Menschen schon in der Fetalzeit, wachsen die undifferenzierten Ganglienzellen langsam heran. Zu einem wohldefinierten Zeitpunkt, wenn nämlich das Cytoplasma eine gewisse Ausdehnung erreicht hat, läßt sich in ihm erstmalig mit Gomoris Chromalaunhämatoxylin ein sehr feinkörniges Neurosekret nachweisen. Im Laufe des weiteren Lebens nimmt dieses Sekret mit der Vergrößerung der Zellen ständig an Menge zu. Die Zahl der neurosekretorischen tätigen Ganglienzellen wächst. Zweikernige, neurosekretorisch tätige Ganglienzellen treten beim Menschen bereits in der Fetalzeit auf.Noch vor dem Sichtbarwerden des Neurosekretes in den Ganglienzellen der Kerngebiete findet man Neurosekret im Hypophysenhinterlappen. Diesen Umstand führen wir auf die Speicherfunktion der Hypophyse zurück. Auch im Hypophysenhinterlappen nimmt der Neurosekretgehalt im Laufe des Lebens stetig zu; in gleichem Maße bessert sich die Kapillarisierung.Die Gliazellen der Kerngebiete und die Neurohypophyse lassen eine Beteiligung an histologischen und cytologischen Entwicklungsprozessen, soweit man die Chromalaunhämatoxylin-Phloxinfärbung einer Beurteilung zugrunde legen darf, vermissen.Die Beobachtungen über die Histogenese des neurosekretorischen Systems stehen mit der Entwicklung anderer für den Wasserhaushalt wichtiger Organe wie der Niere und mannigfachen physiologischen und klinischen Beobachtungen in gutem Zusammenhang. Beispielsweise besitzen auch Extrakte des Hypophysenhinterlappens vom Neugeborenen nur Bruchteile der Wirksamkeit vom Erwachsenen. Der physiologische Diabetes insipidus des Säuglings darf zum Teil auf ein Unvermögen der neurosekretorisch tätigen Kerngebiete im Hypothalamus zur Produktion antidiuretischer Substanzen zurückgeführt werden. Das morphologische Bild der Niere, Clearanceuntersuchungen und eine selbst bei Belastung durch Hinterlappenextrakte fixierte physiologische Isosthenurie beim Säugling weisen darauf hin, daß im Falle einer Bildung antidiuretisch wirksame Substanzen infolge der Unreife der Nieren dort keinen Angriffspunkt fänden. Auch die osmoreceptorische Funktion der neurosekretorischen Zellen dürfte sich erst mit der Zeit ausbilden.Die Untersuchungen wurden mit Unterstützung durch die Deutsche Forschungsgemeinschaft durchgeführt.  相似文献   

5.
Zusammenfassung Die sehr zahlreichen Nervenfasern für die Thymus der Sauropsiden gehen hauptsächlich vom zervikalen sympathischen Strang, aber zum Teil auch vom Vagus und vielleicht von den ventralen Ästen der zervikalen Nerven aus und erreichen die Thymus, indem sie den Gefäßen entlang laufen.Die Faserbündelchen, in welchen man oft isolierte oder in Gruppen gesammelte sympathische Zellen antrifft, dringen in das Thymusparenchym ein und hier verästeln sie sich sehr stark. Ein kleiner Teil der Nervenfasern sind Vasomotoren, ein anderer ebenfalls kleiner Teil verschwindet innerhalb von Gruppen von epithelioiden Zellen, welche oft mit drüsenähnlichen Höhlungen versehen sind (einige von diesen epithelioiden Anhäufungen erinnern im Aussehen an dieHassall-Körperchen der Säugetiere); echte typische H. K. sind sehr selten in erwachsenen Tieren nachweisbar.Der größte Teil der Nervenfasern erreicht jedoch die myoiden Zellen und verbindet sich mit denselben. Bei Cheloniern und bei Hühnern ist der Nervenanteil, der den myoiden Elementen vorbehalten ist, wirklich übermäßig groß.Die myoiden Zellen sind bekanntlich ein oft sehr ansehnlicher Bestandteil der Thymus der Sauropsiden, wie bei anderen Wirbeltiergruppen. Sie sind regressiven und progressiven Veränderungen unterworfen: je nach den Jahreszeiten (Dustin), ebenso besonderen funktionellen Bedingungen wie Fasten, Winterschlaf (Hammar); sie zeigen beim Huhn eine Hyperplasie-Hypertrophie als Folge der Kastration und des Alters (Terni).In vorliegenden Untersuchungen sind nebenbei einige neue Tatsachen über die Morphologie der myoiden Zellen festgestellt worden, unter anderen folgende: a) ihre histologische Differenzierung während der Entwicklung tritt sehr spät ein; b) sie sind räumlich von dem retikulär-kollagenen Netze des Thymusläppchens unabhängig, und sie besitzen keine retikulosarkolemmale Membran; c) die strahlenförmige (konzentrische) oder regellose Anordnung der Querstreifung der Myofibrillen in den großen myoiden Elementen bildet sich als Resultat der Verschmelzung von vorher unabhängigen Zellen (weshalb die besprochenen Elemente echte Syncytien sind); d) im Protoplasma der myoiden Zellen finden sich Spuren von Glykogen; usw.Die Verbindungen zwischen Nervenfasern und myoiden Elementen und andere Einzelheiten der feineren Verteilung der Nervenelemente im Thymusläppchen wurden bei Cheloniern und Vögeln besonders eingehend untersucht. An der Oberfläche der myoiden Zellen bilden die Nervenfasern Windungen oder spatel-, knopf-, keulchen- oder füßchenförmige Verbreitungen, welche der myoiden Substanz anhängen (neuromyoide Verbindungen).Die Nervenfasern, welche sich durch diese Endigungsweise mit den myoiden Zellen verbinden, gehören sehr wahrscheinlich zu den postganglionären Neuronen, welche entweder im Thymus (intraparenchymale oder perivasale mikroskopische Ganglien) oder im zervikalen sympathischen Gefäßgeflecht oder im sympathischen Grenzstrang liegen.Über Wesen, Zweck und Ziel der Vagusfibern habe ich mir kein bestimmtes Urteil bilden können.Außerdem befinden sich im Thymusläppchen wenige Nervenzellen des gewöhnlichen sympathischen Typus und in größerer Zahl kleine isolierte Nervenzellen, die zweifellos mit den interstiziellen ZellenCajals zu identifizieren sind. Diese interstiziellen Neuronen befinden sich meistensin der Nähe der myoiden Zellen und liegen oft auf der Oberfläche derselben, indem sie sie mit ihren verästelten Fortsätzen umfassen. Manchmal verbindet sich ein langer und feiner Fortsatz der interstiziellen Neuronen mit einer entfernt gelegenen myoiden Zelle. Diese Nervenzellen müssen zum größten Teil alsautonome effektorische Neurone aufgefaßt werden, wegen ihrer innigen Verbindung mit der kontraktilen Substanz. Wenn eine Kontraktionsmöglichkeit der myoiden Zellen auch nicht in Abrede zu stellen ist, ist es nicht recht verständlich, was für eine nützliche Wirkung ihre Kontraktion haben könnte (darum gebrauchen wir den Ausdruck effektorisch und nicht motorisch).Man kann oft beobachten, daß an der Oberfläche einer und derselben myoiden Zelle sich sowohl Fäden von exogenen Nervenfasern, als auch verästelte Fortsätze einer kleinen interstiziellen paramyoiden Zelle ausbreiten.Obwohl in der Thymus (wie auch im Darm;Cajal) das Wesen der Fortsätze der interstiziellen Neuronen zweifelhaft ist, mangels sicherer differentialer Merkmale zwischen Neuriten und Dendriten, ist doch das Aussehen der mit den myoiden Zellen verbundenen Fasern ganz verschieden von demjenigen der Fortsätze der interstiziellen Zellen.In einigen wenigen Fällen ist es möglich, einen dünnen und langen Fortsatz (Neurit?) der interstiziellen Zelle zu verfolgen, welcher ein kleines Blutgefäß erreicht; es ist möglich, daß er längs desselben eine proximale Richtung verfolgt. Dieses Verhalten läßt die Vermutung zu, daß wenigstens einigen dieser Neuronen die Bedeutung vonrezeptorischen Neuronen zuzuschreiben sei.Die Deutung des reichen Zuflusses und der ansehnlichen Verteilung des nervösen Anteils im Thymusparenchym der Sauropsiden ist, vom Gesichtspunkt ihrer möglicherweise endokrinen Funktion, nicht leicht: Sei es, weil die Innervation anderer endokriner Drüsen histologisch nicht genau bekannt ist (mit Ausnahme der Paraganglien); sei es, weil es überhaupt zweifelhaft ist, ob die Thymus eine innere Sekretion besitzt.Es ist möglich, daß die Anwesenheit der neuromyoiden Synapsen in der Thymus (welche hier zum ersten Male hervorgehoben wird), wenn auch die myoiden Zellen nicht kontraktionsfähig sein sollten, trotzdem mit dem Kohlenhydratenstoffwechsel in Zusammenhang steht, ähnlich wie es für die neuromuskularen Synapsen des zerebrospinalen Systems angenommen wird (Roncato).Der beinahe übergroße Reichtum nervöser Verzweigungen und neuromyoider Verbindungen, besonders bei Cheloniern, legt die Vermutung nahe, daß in zyklischen degenerativen Vorgängen des Thymusparenchyms eine Zerstörung und nachfolgende übermäßige Regeneration von Nervenfasern stattfindet; andererseits läßt die Zunahme der Zahl und Verzweigung der Nervenfasern im Kapaun und alten Hahn (Terni) die begründete Vermutung zu, daß es sympathische Neuronen gibt, welche einer auch verspäteten progressiven histologischen Differenzierung ihrer Neuriten fähig sind (eine verspätete histologische Vervollkommnung des Zellenleibes und der Dendriten in sympathischen Neuronen ist schon in menschlichen Ganglien bekannt;Terni).Aus diesen Gründen lassen die voliegenden Beobachtungen über die Thymus der Sauropsiden den Gedanken aufkommen, daß die stark entwickelte autonome Innervation der Thymus in der Funktion dieses Organs eine bedeutende Rolle spielt: sei es als Sitz besonderer Reize, welche sich wahrscheinlich in den neuromyoiden Apparaten entladen, sei es, weil die Nervenfasern mit Vorrichtungen versehen sind, welche auf lokale oder allgemeine Reize mit besonderer Empfindlichkeit morphologisch reagieren.  相似文献   

6.
Riassunto E' stato seguito lo sviluppo ovulare del fegato nel Gallus dom., mediante tecniche istochimiche atte a rivelare attività fosfatasica acida, esterasiche non specifiche e colinesterasiche. L'indagine si è poi estesa ad abbozzi o frammenti di fegato coltivati in vitro.
Zusammenfassung Die Leber von Gallus dom, wurde mit enzymhistochemischen Methoden zum Nachweis von Carboxylsäureesterasen und saurer Phosphatase während der ganzen Entwicklung und in der ersten Zeit nach dem Schlüpfen untersucht. Im Leberparenchym treten die Phosphatase und die mit alpha-Naphthylacetat, Naphthol-AS-Acetat oder 5-Brom-Indoxylacetat nachweisbaren Esterasen sehr früh in Erscheinung, während mit der Methode nach Koelle und Gerebtzoff keine Reaktion auf Cholinesterasen zu erhalten ist. Im Mesenchym und im Epithel der Gallenwege sind die Phosphatase bzw. die unspezifischen Esterasen in keinem der untersuchten Stadien aktiv, und da die Volumenzunahme und die Differenzierung des Lebergewebes keinen Änderungen in der Lokalisation der Enzymaktivitäten entspricht, ist anzunehmen, daß diese nicht überwiegend an die Entwicklung der Anlage gebunden sind.Auffällig ist die ungleichförmige Verteilung der unspezifischen Esterasen in der Leberanlage. Im blutgefäßnahen Teil des Cytoplasmas der Hepatocyten und besonders in den Leberzellen um die zentrolobulären Venen sind die Esterasen am aktivsten, was wohl dafür spricht, daß diese Enzyme an den Leberstoffwechsel gebunden sind. Die saure Phosphatase ist gleichförmig im Parenchym verteilt, und man muß demnach annehmen, daß die beiden Enzymgruppen — saure Phosphatase bzw. unspezifische Esterasen — nicht in der gleichen Weise in die histogenetischen Prozesse eingreifen.Bei der Züchtung eines Stückes der Leberanlage in vitro erhält man ganz charakteristische histotopochemische Bilder. Im Zentrum des Explantats entspricht die Reaktion auf Phosphatase oder Esterase derjenigen, die man in vivo im gleichen Entwicklungsstadium erhält, was wohl auch damit zusammenhängt, daß dieser Teil des Explantats keinen stärkeren Strukturumwandlungen unterliegt. In den Fällen, in denen es auch nur zu leichten Degenerationserscheinungen kommt, nimmt die Aktivität der unspezifischen Esterasen allerdings eindeutig ab. An der Peripherie des Explantats, wo man einige Schichten unterschiedlicher Struktur beobachten kann, ändert sich das normale Bild der Enzymreaktionen. Die das Explantat umhüllende Mesenchymmembran ist enzymlos, während die unter dieser in vitro gebildeten Hülle beerenartig angeordneten Hepatocyten eine Reaktion auf Phosphatase und Esterase geben, die der in vivo auftretenden Anfärbung entspricht. Die zwischen der äußersten Parenchymschicht und dem zentralen Kern des Explantats liegende Zellschicht besitzt keine deutliche Struktur und ist von verschiedenartigen Zellen, auch solchen in Degeneration, durchsetzt. In dieser Schicht erhält man die stärkste Reaktion auf Phosphatase und unspezifische Esterasen, was ein Anzeichen dafür ist, daß es sich hier um eine sehr vitale Zone handelt.


Le ricerche sono state eseguite sotto gli auspici del C. N. R. italiano.  相似文献   

7.
Zusammenfassung Es wird der Einfluß verschiedener Reize auf den Zellverband der Deckzellen des Meerschweinchennetzes unter möglichst physiologischen Bedingungen untersucht.Das Netz reagiert in Form einer Spannungserhöhung oder einer Erschlaffung des ganzen Zellverbandes, formhaft sichtbar durch Enger- und Weiterstellung der Netzmaschen.Adrenalin, Ergotamin und andere Reizmittel bewirken eine Spannungserhöhung durch Kontraktion der Fibrocyten, die im Extremfall die Netzlöcher fast völlig verschließt und im Plasma der Fibrocyten eine feine Querstreifung entstehen läßt.Atropin und Acetylcholin bewirken im Endeffekt eine Erschlaffung des Netzes unter Weiterstellung der Maschen. Dabei fließen kleinere Maschen zu größeren zusammen und das Plasma der Deckzellen verschmälert sich auffallend zu einer den Faserbündeln des Netzes dicht anliegenden Hülle.Es wird der Nachweis geführt, daß die Reaktionen ohne Schädigung des Gewebes verlaufen, sie sind reversibel, am überlebenden Netz beobachtet und am fixierten Präparat soweit morphologisch möglich, analysiert.Die erwähnten Reaktionen sind an das Plasma der Deckzellen gebunden und beruhen nicht auf einer Veränderung des Faserskeletes. Dieses spielt nur eine passive Rolle.Am Mesenterium des Meerschweinchens läßt sich ebenfalls eine kontrahierende Wirkung des Adrenalins nachweisen, die aber hier an den Plattenepithelien auch bei starker Reaktion ohne Querstreifungsbild verläuft, allenfalls nur eine Granulierung im Plasma entstehen läßt.  相似文献   

8.
Zusammenfassung Die Nukleolen von Hühnerherzmyoblasten können durch ein verbessertes Verfahren annähernd lebensgetreu dargestellt werden. Die im lebenden Zustand recht homogen aussehenden Nukleolen lassen nach geeigneter Behandlung charakteristische Innenstrukturen erkennen, deren Differenzierungsgrad von der Größe der Zellkerne abhängt, die ihrerseits vom Interphasealter der Zellen bestimmt wird.Zur Ermittlung des Interphasealters wurden die Größen von mehreren hundert Kernen in zwei Myoblastenkulturen gemessen. Durch rechnerische und statistische Verfahren konnte daraus die Wachstumskurve der Interphasekerne gewonnen werden. Die weiteren Untersuchungen galten dann den Wechselbeziehungen zwischen der Nukleolusdifferenzierung und dem Kernalter.Zur Identifizierung der Nukleolusbestandteile wurden mehrere cytochemische und färberische Nachweisverfahren verwendet, mit deren Hilfe sich chromatische, fadenförmige Strukturen mit einem gewissen DNS-Gehalt nachweisen ließen, die von einer RNS-haltigen Substanz allseits wolkenartig umgeben waren. Die morphologischen und stofflichen Eigenschaften dieser Nukleolusinnenstrukturen deuten auf ihre chromosomale Natur hin, wofür auch der Umstand spricht, daß die Anzahl der Nukleoluseinheiten pro Zellkern von Generation zu Generation konstant bleibt.Wenn die Chromosomen unmittelbar vor und nach der Mitose infolge ihrer starken Kondensierung sichtbar und auch die Nukleolen eben noch bzw. schon wieder erkennbar sind, kann man nachweisen, daß sie integrierende Bestandteile zweier Chromosomen sind.Mit fortschreitender Interphase dekondensieren die extranukleolären Chromosomenanteile und entziehen sich damit der mikroskopischen Betrachtung. Während dieser Zeit erscheinen die Nukleolen zunächst als kompakte Massen, werden dann langsam größer, lockern sich dabei auf und lassen in einer homogen erscheinenden grauen Masse zunächst eine und bald darauf zwei dünnere identische Fadenstrukturen erkennen, die mitunter weit auseinander weichen. Dieser Vorgang tritt gesetzmäßig ein und muß als Chromosomenspaltung im Hinblick auf die zur nächsten Zellteilung notwendige Chromosomenverdoppelung gedeutet werden. Während der frühen Prophase rücken die beiden Chromosomenspalthälften noch einmal zu einer scheinbaren Einheit zusammen und werden mit Beginn der Anaphase vom Spindelapparat endgültig getrennt.Das Verhalten der Nukleolen gibt auch Hinweise auf ihre Funktion. Die Nukleolen treten im Verlauf der Interphase mit grauer Substanz beladen an die Kernmembran heran und geben diese in submikroskopisch kleinen Mengen an das Cytoplasma ab. Das Produkt der Nukleolen besteht aus RNS-haltigen Granula, die nur im Elektronenmikroskop sichtbar sind und sicher eine Bedeutung für die Eiweißsynthese der Myoblasten haben, die bei der raschen Zellteilungsfolge sehr rege ist. Nach der Aktivitätsphase löst sich der chromosomale Anteil der Nukleolen mit einem Rest an grauer Substanz wieder von der Kernwand ab und wandert zum Kerninnern zurück, wo er dann im expandierten Zustand einen genaueren Einblick in seine chromatischen Strukturen zuläßt. Der den Nukleolen verbliebene Substanzrest wird noch vor der Zellteilung, nämlich nach der Auflösung der Kernmembran während der Prophase, in mikroskopisch sichtbarer Form dem Cytoplasma zugeführt.Gelegentlich erfolgen während der Interphase Nukleolusextrusionen. Hierbei können außer der RNS-haltigen Substanz auch chromosomale Nukleolusanteile knospenartig in das Cytoplasma ausgeschleust werden. Dieser Vorgang ist zwar sehr augenfällig, kann aber schon aus statistischen Gründen kaum eine besondere Bedeutung haben, weil er keine regelmäßige Versorgung des Cytoplasmas mit RNS-haltigen Substanzen gewährleistet.Die Arbeit wurde durch eine Sachbeihilfe der Deutschen Forschungsgemeinschaft ermöglicht. Herrn Professor Dr. R. Danneel, danke ich für beratende Hilfe, Frl. stud. med. R. Mielke und Frau A. Meyer für technische Assistenz.  相似文献   

9.
Zusammenfassung Die Nerven der Milz treten in überwiegender Mehrzahl durch die Hilusleiste in das Organ ein. Ein kleiner Teil der Nervenstämmchen bildet ein in der Milzkapsel subserös gelegenes Geflecht, das nur aus wenigen verstreut liegenden kleinen Faserbündeln und einzelnen zum Teil markhaltigen Nervenfasern besteht.Die größeren Nervenfaserstämme gruppieren sich im Hilusgebiet um die Gefäße herum und ziehen entweder durch die Trabekel in das Innere der Milz oder treten sogleich in die Milzpulpa ein.In den Trabekeln findet eine allmähliche Aufteilung der Nervenfaserbündel in eine größere Zahl kleinerer Faserbündelchen statt. Letztere verlaufen meist parallel zu den glatten Muskelfaserzügen des Trabekels. Einzelne Nervenfäserchen, die den in den Trabekeln verlaufenden Bündeln entstammen bilden gemeinsam mit anderen Nervenfasern ein Endnetz, das sowohl innerhalb der Muskelfaserzüge als auch an der Trabekeloberfläche zu beobachten ist.Ein derartiges Endnetz, das sich wahrscheinlich bei allen autonom innervierten Organen aus einer zunehmenden dichotomischen Aufteilung der Nervenfasern herleitet ist dadurch charakterisiert, daß Achsenzylinder unter Bildung der typischen dreieckigen Knotenpunkte, an denen die fibrilläre Auflockerung meist sichtbar wird, miteinander in direkter Verbindung stehen. Es fehlen hierbei freie Nervenfaserenden. Dieses aus Achsenzylindern bestehende Netz hat gleichsam als Leitbahn ein syncytiales Plasmastrangnetz mit Zellkernen (Schwannsche Kerne), welches mit den neuerdingsvon Lawrentjew undvan Esveld eingehend beschriebenen interstitiellen Zellen identisch ist.Die feinsten Nervenfasern endigen innerhalb der glatten Muskelfasern entweder im Cytoplasma oder auf dem Zellkern derselben.Von der Oberfläche der gröberen Trabekel setzen sich die nervösen. Geflechte auf die feineren Verzweigungen des Trabekelsystems fort, zu denen sich auch Achsenzylinder aus der Milzpulpa zugesellen. Die nervöse Versorgung der glatten Muskulatur wird um so ausgiebiger je feiner die Trabekel werden. Die Achsenzylinder verlaufen teils auf der Oberfläche, teils zwischen den glatten Muskelfasern der feinsten Trabekel und zeigen gewöhnlich an Stellen, an denen der Trabekel stärker kontrahiert ist, und in der Umgebung von Muskelzellkernen einen stark gewundenen Verlauf.Diejenigen stärkeren Nervenfaserbündel, die oft auf lange Strecken ihren Weg durch die Milzpulpa nehmen, zeigen nach kurzem Verlaufe eine starke Auflockerung ihres Gefüges und eine fortschreitende Aufteilung in kleinere Faserbündel mit zunehmender gegenseitiger Durchflechtung. In diesen Bündeln sind die einzelnen Achsenzylinder in kernhaltige Plasmastränge eingeschlossen, die den Nervenfasern inBiblschowsky-Präparaten das Aussehen von markhaltigen Nervenfasern verleihen.Die einzeln in der Milzpulpa verlaufenden Achsenzylinder liegen intraplasmatisch in den Reticulumzellen. Das Reticulum scheint sich auch an der Fixierung der stärkeren Nervenfaserbündel an die Milzpulpa zu beteiligen.Die kleineren Arterien und Venen der Milz sind stets von Nervenfasern umgeben die in der Adventitia der Gefäße ein wenig ausgesprochenes Geflecht bilden. Einzelne Achsenzylinder sind bis in dieMalpighischen Körperchen hinein zu verfolgen.  相似文献   

10.
Zusammenfassung Wir halten an unserer Auffassung der Synapsen im Sympathikus im Sinne einer elektrischen Maschennetzschaltung bzw. eines Rückkoppelungssystems mit Kondensator, Widerstand und Detektor fest. Diese Vorstellung ist sowohl mit den komplizierten morphologischen Strukturen, als auch den neueren physiologischen Ergebnissen über die vorwiegend elektrische Natur der Erregung und Leitung in den Ganglien in Übereinstimmung (Lorente de Nó, Prosser, Govaerts).Die Synapsen liegen an den Stellen der in verschiedenen Formen auftretenden, um die Ganglienzellen liegenden Endapparate, wo sie direkten Kontakt mit der Zelloberfläche haben. Man hat sich das daher nicht nur an einer kleinen umschriebenen Stelle, sondern auch auf einer größeren Strecke und an verschiedenen Punkten zugleich vorzustellen.Die Synapsen sind ebenso wie alle an die Zellen herantretenden oder aus ihr heraustretenden Nervenfasern in eine Isoliermasse, das Scheidenplasmodium (Stöhr) eingebettet, das physiologisch auch noch StoffWechselfunktionen dient, die wir im einzelnen noch nicht kennen, das jedoch kein Acetylcholin produziert (Lorente de Nó).Die Stöhrsche Auffassung vom Terminalretikulum als einem feinsten nervösen Netzwerk, das Ganglienzellen und Nervenfasern in gleicher Weise schleierartig einhüllt, das Scheidenplasmodium innerviert und auf diese Weise sowohl Ganglienzellen als Scheidenzellen nervöse Impulse zuteilt, läßt sich in keiner Weise mit den neueren physiologischen Vorstellungen vorwiegend elektrischer Erregungsprozesse zur Deckung bringen. Danach ist das Terminalretikulum physiologisch ein Absurdum, da dadurch weder eine Erregungsleitung, noch differente, selektionierte Reize möglich sind. Die Existenz des nervösen Terminalretikulums wird von den meisten Forschern in Frage gestellt.Das Scheidenplasmodium ist ektodermaler Abstammung und umfaßt ebenso die sogenannten Kapselzellen, als auch die die Fortsätze und Nervenfasern umscheidenden Zellen, ist also identisch mit den Schwannschen Zellen (Koelliker, Kohn).Sogenannte neurogene Nebenzellen (Kohn) spielen im Sympathikus des Erwachsenen keine wesentliche Rolle, da sie, wenn überhaupt, immer nur vereinzelt vorkommen. Es ist in keiner Weise berechtigt, nach Stöhr diese zusammen mit den Scheidenzellen als Nebenzellenplasmodium zu bezeichnen und es als Gewebe sui generis zu betrachten.Eine Innervation des Scheidenplasmodiums widerspricht absolut den morphologischen und physiologischen Tatsachen, dagegen liegen in ihm stets die Zellfortsätze und Endapparate (Isolation und Stoffwechsel). Ein Kapselraum existiert um die lebende Nervenzelle offenbar nicht (Szantroch).Die Kernform der Scheidenzellen ist wechselnd, was weitgehend von funktionellen Zuständen und mechanischen Faktoren abhängt.Das Eindringen von Scheidenplasmodium in das Neuroplasma der Ganglienzellen ist beim Menschen absolut unbewiesen, und damit auch eine Verzahnung (Stöhr), außerdem aber würde es der physiologisch-elektrischen Vorstellung der Erregung und Leitung völlig widersprechen.Als äußere Hülle der sympathischen Ganglienzellen figuriert eine außen aus gröberen, innen aus feinsten netzförmigen Bindegewebsfasern bestehende Kapsel.Ein exakter Beweis gegen den individuellen Zellcharakter der Ganglienzellen, die vielfach in Gruppen zusammenwirken, ist bisher nicht erbracht und daher die Neuronentheorie, wenn auch nicht mehr in ihrer starren Form, durchaus noch gültig und vor allem durch die neueren physiologischen Ergebnisse fest gestützt.  相似文献   

11.
Zusammenfassung Die Untersuchungen wurden im Rahmen neuroethologischer Arbeiten am Oberschlundganglion von Calopteryx splendens (Odonata) durchgeführt. Sie bilden die Voraussetzung für eine integrierende Synthese morphologischer und ethologischer Kenntnisse, auf Grund dessen wir etwas über die Informationsstruktur des Zentralnervensystems erfahren können.Die an den beiden letzten Larvenstadien beschriebenen Analysen nach Ganzkopfbestrahlungen betreffen Spätschäden.Nach morphologischen Gesichtspunkten werden vier Neuronenperikaryen unterschieden: 1. Globuliperikaryon. 2. Großes Perikaryon mit großem rundlichem Kern. 3. Großes cytoplasmareiches Perikaryon mit gelapptem Kern. 4. Perikaryon mit neurosekretorischer Tätigkeit. Außer gemeinsamen Abweichungen von der Norm weist jeder Perikaryontyp während des Spätschadens charakteristische morphologische Veränderungen auf. Es ist anzunehmen, daß diese zelltypischen Unterschiede der Erscheinungsbilder auch solchen in der Funktion entsprechen.Bei den Globuliperikaryen (besonders bei denjenigen, die im Zellverband der Corpora pedunculata liegen), den großen cytoplasmareichen Perikaryen mit gelappten Kernen und den sekretorisch tätigen Neuronenkörpern nehmen die Volumina des Neuroplasmas unter gleichzeitigem Sinken der Kerngröße zu. Eine Ausnahme hiervon bilden die großen Perikaryen mit großem rundlichem Kern. Bei ihnen allein wird auch der Nukleolus im Karyoplasma deutlich sichtbar. Für alle vier Perikaryen sind während des Spätschadens mehr oder weniger starke Chromatinkonzentrationen kennzeichnend. Hinsichtlich der Veränderungen neuroplasmatischer Einschlüsse ähneln sich einerseits die Globuliperikaryen und die großen cytoplasmareichen Perikaryen mit gelappten Kernen, andererseits die großen Perikaryen mit rundlichen Kernen und diejenigen mit neurosekretorischer Tätigkeit. Die Unterschiede beider Gruppen beziehen sich vor allem auf Strukturen des mit Ribosomen besetzten endoplasmatischen Reticulums, die Dictyosomen und Mitochondrien. Besonders auffallend sind die in den großen Perikaryen mit großen rundlichen Kernen auftretenden, tief schwarzen Granula, die vielfach den Eindruck von Ribosomenkonzentrationen erwecken. Die Sekrettropfen der neurosekretorischen Perikaryen sind während des Spätschadens insgesamt reduziert und verklumpen infolge von Membranverlusten untereinander.Im Gegensatz zu den Ergebnissen lichtmikroskopischer Untersuchungen sind Veränderungen im Neuropilem während des Spätschadens gut darstellbar. Einschlüsse der Axone und Gliafortsätze werden beschrieben und mit den Befunden anderer Autoren verglichen. Nach Bestrahlungen sind die axoplasmatischen Einschlüsse stark reduziert. Dies bezieht sich besonders auf die praesynaptischen Bereiche, die infolge Rückbildung der synaptischen Bläschen und der mit ihnen auftretenden Granula weitgehend leer erscheinen. Außerdem ist die Struktur der Mitochondrien, besonders ihrer Cristae, gestört. Es ist anzunehmen, daß es sich hierbei um irreversible funktionelle Störungen handelt. Larven, die nach Beendigung der Latenzzeit solche histopathologischen Merkmale aufweisen, zeigen auch ethologisch keine Remission mehr.Herrn Prof. Dr. Friedrich Seidel in Verehrung und Dankbarkeit gewidmet.Herrn Dr. Wolrad Vogell, Leiter des Laboratoriums für Elektronenmikroskopie der Universität Marburg a.d. Lahn, möchte ich für die Erlaubnis zur Anfertigung der Aufnahmen und für seine eingehende Beratung besonders herzlich danken. Dem Leiter der Forschungsgruppe Elektronenmikroskopie der Deutschen Forschungsanstalt für Psychiatrie des Max-Planck-Instituts München, Herrn Dr. Dr. Hermann Hager, danke ich sehr für die wertvollen Hinweise zu dieser Arbeit, Fräulein Barbara Schüler (Elektronenmikroskopisches Laboratorium, Marburg) für die Anfertigung der Aufnahmen.  相似文献   

12.
Zusammenfassung Nyctalus noctula wählte als Winterschlafplatz einen Ort mit sehr warmem Microklima und bewies damit die Fähigkeit, einen der wärmsten Plätze in einem Gebiet erstaunlich genau aufzufinden. Der Winterschlaf wurde sehr häufig unterbrochen, bis Ende des Dezember waren die Zeiten des tiefen Winterschlafs kürzer als die Tage, an denen sich die Tiere im Stadium des leichten Winterschlafs befanden. Im Gegensatz zu den Felsfledermäusen war dieses Stadium beim Abendsegler nicht ein von warmer Außentemperatur abhängiger Zustand, sondern die Körper-temperatur war dabei höher als die der Umgebung, was daraus hervorgeht, daß sich einzelne Tiere infolge größerer Schlafbereitschaft zu gleicher Zeit im tiefen Winterschlaf befanden. Die Schlafbereitschaft war anfangs nur schwach und die Tiere wurden von leichten Temperatur-schwankungen stets geweckt. Allmählich erhöhte sie sich, bis die Abendsegler am Ende des Winters gegen Störungen völlig unempfindlich waren, wobei gleichlaufend die Zeiten ununterbrochenen Schlafes sich verlängerten. Der Wegzug erfolgte anfangs des März, obwohl die Temperatur nicht wärmer war als an mehreren Tagen während des Winters. In der ersten Zeit gaben die Fledermäuse sehr häufig Lautäußerungen von sich. Es wurde festgestellt, daß die Einzellaute gleichbedeutend sind mit je einer Atembewegung: Da die verschiedenen Stadien des Winterschlafs neben den Wärmeunterschieden auch an der verschiedenen Atemfrequenz unterscheidbar sind, ließen sich nunmehr die Stadien an der Lautfrequenz erkennen. Bei plötzlich eintretender Kälte erwachten die Tiere völlig und begaben sich an relativ wärmere Plätze. Doch auch dort herrschte noch eine sehr tiefe Temperatur, die bewirkte, daß die Fledermäuse nahezu 24 Stunden wach blieben, wobei sie sich zum Teil lebhaft bewegten. Nach diesem Kältetag zeigte sich eine bedeutend größere Schlafbereitschaft. Bei zwei Tieren wurde eine Reaktions-hemmung beobachtet, die dem Zustand der Akinese bei Vögeln ähnlich war.Die Maße der Vorderarms ergaben durchschnittlich größere Längen als sie Miller angibt, und dessen Maximum wurde überschritten. Die waren durchschnittlich größer als die .  相似文献   

13.
Zusammenfassung Die untersuchten Epiphysen I, II, III (23, 24, 31 Jahre) zeigen ein, was Menge und Anordnung des Bindegewebes, der Glia und der Pinealzellen anbetrifft, verschiedenes Verhalten. In Epiphyse I finden sich starke bindegewebige Septen. Epiphyse II hat ein mächtiges zentrales Glialager. Epiphyse III weist eine mehr oder weniger zentral gelegene, mit Flüssigkeit erfüllte große Cyste auf.Konkremente nehmen hier (entgegen der allgemeinen Regel) mit dem Alter ab. Sie sind regellos im Pinealzellgewebe verteilt. Der Pigmentgehalt nimmt in Übereinstimmung mit anderen Autoren mit dem Alter etwas zu.Der Aufbau von Epiphyse II läßt sich von Epiphyse III herleiten. In allen drei Epiphysen gleichen die Pinealzellen einander und sind normal. Die Pinealzellen liegen in einem reichen Fasergeflecht aus einer wechselnden Anzahl gröberer, im nach Alzheimer gefärbten Präparat (Fix. nach Flemming) rot und einer großen Anzahl feinerer, im gleichen Präparat grün färbbarer Fasern. Die grünen Fasern enden oft knopf förmig um die Gefäße und bilden das sog. Terminalretikulum.Scharfe Zellgrenzen können nicht zur Darstellung gebracht werden. Was bei schwachen Vergrößerungen als solches gedeutet wurde, erwies sich, mit Immersion betrachtet, als stärkere Züge des reichen Faserfilzes, in dem die Pinealzellen liegen. Möglicherweise bilden die Zellen ein Syncytium. Die Grundform der Zellkerne ist die eines Rotationsellipsoids. Das Chromatin ist im Vergleich zu dem vieler anderer Organzellkerne spärlich und fein verteilt. Nucleoli kommen in wechselnder Anzahl und Größe vor und sind homogen färbbar. Sie können offenbar wachsen. Von einer bestimmten Größe ab, meist etwa 2 nehmen die Nucleoli mehr Flüssigkeit als kolloide Substanzen auf. Der Nucleolus wird zu einem schollenreichen Gebilde: der nucleolären Blase, welche von einer mikroskopisch nachweisbaren Membran umgeben ist.Die nucleolären Blasen wandern zur Kernmembran, ihre Membran verklebt mit der Kernmembran, und auf der kernseitigen Fläche der Nucleolarmembran häuft sich Chromatin an. Es kann die Verklebungsstelle cytoplasmawärts über die Kernkontur vorgetrieben sein, was unter anderem für die Beurteilung der Richtung des Ablaufes dieses Vorganges wichtig ist. Nach Schwinden der Verklebungsstelle wird der Inhalt der nucleolären Blase ins Cytoplasma entleert. Um die Eröffnungsstelle findet man einen scharfen, dann stumpfen und zuletzt runden Saum.Es ist wahrscheinlich, daß nicht immer die Verklebungsstelle beider Membranen über die Kernkontur vorgewölbt wird.Die Ausstoßung des Inhalts der nucleolären Blase kann auf jedem Entwicklungsstadium erfolgen.Mit Unterstützung der Gesellschaft der Freunde und Förderer der medizinischen Fakultät.  相似文献   

14.
Zusammenfassung Im ersten Abschnitt wird die ääußere Erscheinung der Krokodileier behandelt und hinsichtlich der Oberflächengestaltung eine Einteilung in 5 Typen gegeben. Eine Liste gibt die Durchschnittswerte der Maße der Schale (Länge, Breite, Schalenstärke) für 18 Arten und ordnet sie den Typen zu.Im zweiten Abschnitt wird über die Struktur der Kalkschale berichtet Gleich der Kalkschale der Vogeleier besteht die der Krokodile aus einer einfachen Lage von Calcitsphaerokristallen, deren Zentren in den Mam millen liegen, und deren nach außen weisende Elemente säulenartig, als Prismen, entwickelt sind. Die Calcitnatur des Schalenkalkes ergibt sich gemäß den negativ einachsigen Konoskophildern auf dem Flachschliff in Übereinstimmung mit Kelly und ebenso auf Grund der Meigenschen Reaktionen. Die Mammillen bauen sich aus einer geringen Anzahl von Calcitindividuen auf, die keilförmig zugeschärft zusammentreten; ein deutliches Sphaeritenkreuz kommt unter diesen Umständen im Flachschliff der Mammillenschicht nicht zustande. Kellys Phosphatkörnchen im mittleren Teil der Mammillen sind in Wirklichkeit Gaseinschlüsse. Die Prismenschicht ist vor allem in ihrem äußeren Teil durch eine sehr ausgeprägte lamelläre Wachstumsschichtung gekennzeichnet; auch in ihr finden sich öfter größere Gaseinschlüsse. Eine bisher nur bei Krokodileiern bekannte Erscheinung ist eine von der Oberfläche nach innen fortschreitende Corrosion der Kalkschale, die das Relief der Eioberfläche erzeugt, ja labyrinthische Hohlräume in der Kalkschale entstehen lassen kann; sie vollzieht sich wahrscheinlich im unteren Teil der Eileiter, nachdem die Schale normale Stärke erlangt hatte. Die Poren der Schale liegen stets zwischen den Prismen.  相似文献   

15.
Zusammenfassung Mit der Bielschowsky-Methode wurden an dem von Herrn Obermedizinalrat Dr. K. Lange operativ entfernten sympathischen Halsganglion einer 41jährigen an Raynaudscher Erkrankung leidenden Patientin schwerste krankhafte Veränderungen festgestellt. Die überwiegende Mehrzahl aller Ganglienzellen ist pathologisch verändert.Die Ganglienzellen weisen vielfach eine außerordentliche Fortsatzdisharmonie auf. Ausgedehnte Wucherungsprozesse im Bereich des pericellulären Hüllplasmodiums lassen sich beobachten.Die großen Fortsätze der Ganglienzellen sind häufig in ihrem Inneren ausgehöhlt oder fallen in Einzelfibrillen auseinander. Andere Fortsätze tragen kugelige Endgebilde, deren Auftreten als pathologische Reizerscheinung zu werten ist.Alle erdenklichen krankhaften Formen von Kernveränderungen an den Ganglienzellen kommen zu Gesicht.Das gehäufte Vorkommen mehrkerniger Ganglienzellen mit den sich an ihnen abspielenden pathologischen Veränderungen stellt einen weiteren bei der Raynaudschen Erkrankung erscheinenden degenerativen Prozeß im sympathischen Ganglion dar.Die Hyperplasie feinster Nervenfäserchen in der Nähe erkrankter Ganglienzellen sowie die sog. Knötchenbildungen sind vielleicht Ausdruck einer Störung in den Wechselwirkungen zwischen Ganglienzellen und ihrem Hüllplasmodium.Akut entzündliche Erscheinungen im bindegewebigen Interstitium des Ganglions und infiltratähnliche Kernansammlungen sind mehrfach anzutreffen.  相似文献   

16.
Zusammenfassung Der Bildung der Innenschalen bzw. dem wiederholten Häutungsprozeß vonAmphiprora paludosa liegt ein abortiver Teilungsvorgang zugrunde, der sich im Ablauf einer inäqualen, acytokinetischen Mitose manifestiert. Vor deren Eintritt erfolgt eine Differenzierung des Protoplasten derart, daß sich der ungeteilt bleibende Chromatophor samt dem größten Teil des Plasmas gegen die eine Theka hin verschiebt. In der Anaphase der unmittelbar folgenden Mitose wird der Tochterkern, der an dieser Seite zu liegen kommt, normal rekonstruiert, der andere im plasmaarmen Milieu liegende wird pyknotisch und später resorbiert. An der benachteiligten Seite erfolgt unter Kontraktion (Spontanplasmolyse) Abhebung des Protoplasten von der Theka und an der so entstandenen freien Oberfläche Bildung einer neuen Schale bzw. Theka; für die Bildung einer zweiten besteht keine Möglichkeit.Im Unterschied zuEunotia und vermutlichMeridion verläuft also der Vorgang beiAmphiprora ohne Plasmateilung und prinzipiell so wie die Bildung der Schalen von Erstlingszellen in Auxosporen.Die ZweifelBadours sowieOeys undSchnepfs an der Gültigkeit des Satzes, daß alle Schalenbildungen der Diatomeen im Zusammenhang mit Teilungsvorgängen oder ihren Rudimenten stehen, werden entkräftet.  相似文献   

17.
Zusammenfassung Im Blut der Urodelen kommen außer kernhaltigen roten Blutkörperchen stets auch kernlose vor. Ihre Zahl ist bei den einzelnen Arten sehr verschieden. Den höchsten bisher beobachteten Prozentsatz besitzt der lungenlose Salamander Batrachoseps attenuatus. Bei ihm ist die Mehrzahl (90–98%) der Erythrozyten kernlos. Die kernlosen roten Blutkörperchen sind kein Kunstprodukt, sondern ein normaler Bestandteil des Urodelenblutes. Die Kernlosigkeit ist ein Zeichen der höheren Differenzierung der Erythrozyten, nicht dagegen das Zeichen einer Degeneration. Sie ist eine funktionelle Anpassung des Blutes an die Lebensweise und die dadurch bedingte Atmungsweise des Tieres. Die lungenlosen, durch die Haut und die Buccopharyngealschleimhaut atmenden Urodelen haben mehr kernlose Erythrozyten als die mit Lungen atmenden.Die Bildung der kernlosen roten Blutkörperchen findet im zirkulierenden Blut statt und geschieht in Form einer Abschnürung größerer oder kleinerer Cytoplasmastücke von kernhaltigen Zellen. Sie sind infolgedessen ganz verschieden groß. Sehr deutlich läßt sich diese Art der Entstehung kernloser Erythrozyten in vitro beobachten. Vielleicht gibt es daneben auch noch eine zweite Art. Manche kernlosen Erythrozyten mit Jolly-Körperchen und Chromatinbröckelchen machen es wahrscheinlich, daß sie durch eine intrazelluläre Auflösung des Kernes aus einem kernhaltigen Erythrozyten hervorgegangen sind. Die Regel ist jedoch die Abschnürung. Eine Ausstoßung des Kernes kommt bei normalen Erythrozyten nicht vor, sondern nur bei zerfallenden. Sie ist ein Zeichen der Degeneration der Zelle. Der Zelleib geht kurz nach dem Austritt des Kernes zugrunde. Der Kern bleibt als freier oder nackter Kern etwas länger erhalten, um dann aber ebenfalls völlig zu zerfallen.Da im zirkulierenden Blut der Urodelen regelmäßig eine Anzahl von Erythrozyten zugrunde geht, sind in ihm immer freie Kerne zu finden. Sie haben nicht mehr das normale Aussehen eines Erythrozytenkernes, sondern sind bereits erheblich verändert. Schon vor der Ausstoßung des Kernes aus der Zelle tritt eine teilweise Verflüssigung des Kerninhaltes ein; es bilden sich mit Flüssigkeit gefüllte Vakuolen, die zu Kanälchen und größeren Hohlräumen zusammenfließen. Auf diese Weise kommt es zu einer starken Auflockerung und Aufquellung des Kernes. Wenn der Kern den ebenfalls aufgequollenen und sich allmählich auflösenden Cytoplasmaleib verlassen hat und als nackter Kern im Blut schwimmt, schreitet der Prozeß des Zerfalles weiter fort. Nach allen Seiten strömt schließlich der noch nicht völlig verflüssigte Kerninhalt in Form fädiger und körniger Massen aus.Nach Komocki sollen sich diese Massen als eine Hülle um den nackten Kern legen und in Cytoplasma verwandeln, in dem dann später Hämoglobin auftritt. Die nackten Kerne sollen die Fähigkeit haben, aus sich heraus eine neue Erythrozytengeneration aufzubauen. Das ist nicht richtig. Es hat sich kein Anhaltspunkt für eine Umwandlung der den freien Kernen entströmenden Massen in Cytoplasma ergeben. Die Bilder, die Komocki als Beleg für seine Theorien heranzieht, sind vielmehr der Ausdruck der letzten Phase in dem Degenerationsprozeß des Kernes.Andere sogenannte freie Kerne, die Komocki abbildet und als Ursprungselemente einer neuen Erythrozytengeneration in Anspruch nimmt, sind gar keine freien, nackten Kerne, sondern weiße Blutzellen, vor allem Lymphozyten und Spindelzellen. Das weiße Blutbild der Urodelen ist, abgesehen von den Spindelzellen, einer für Fische, Amphibien, Reptilien und Vögel charakteristischen Zellform des Blutes, ganz das gleiche wie das der Säugetiere und des Menschen. Es setzt sich aus Lymphozyten, Monozyten und den drei Arten von Granulozyten, neutrophilen, eosinophilen und basophilen, zusammen. Die Monozyten können sich unter gewissen Umständen, z. B. bei Infektionen oder in Blutkulturen, zu Makrophagen umwandeln und Erythrozyten bzw. Reste zerfallender Erythrozyten phagozytieren. Die phagozytierten Teile roter Blutkörperchen haben Komocki zu der falschen Annahme verleitet, daß bei Batrachoseps attenuatus, in dessen Blut er entsprechende Bilder beobachtet hat, die kernlosen Erythrozyten in besonderen Zellen, sogenannten Plasmozyten entstehen und sich ausdifferenzieren. Komockis Theorie über die Bildung roter Blutkörperchen aus dem Chromatin nackter Kerne ist nicht haltbar. Die Befunde, auf denen sie aufgebaut ist, sind keineswegs beweiskräftig. Sie verlangen eine ganz andere Deutung, als Komocki ihnen gegeben hat. Komockis Kritik an der Zellenlehre ist daher in keiner Weise berechtigt.  相似文献   

18.
Zusammenfassung Es wurde das Auge der Süßwasserturbellarien Dugesia lugubris und Dendrocoelum lacteum mit dem Elektronenmikroskop untersucht. Im Feinbau stimmen die Augen beider Arten im wesentlichen überein. Das eigentliche Auge besteht aus dem Pigmentbecher und den zur Photorezeption differenzierten Nervenendigungen der bipolaren Sehzellen, den sog. Sehkolben. Das Cytoplasma der Pigmentzellen wird von durchschnittlich 1 großen kugeligen, mehr oder weniger homogenen Pigmentkörnchen erfüllt. Der Zellkern liegt in der äußeren pigmentfreien Zone des Cytoplasmas. Vor allem dort können auch das endoplasmatische Reticulum und die Mitochondrien beobachtet werden. Der sog. Pigmentbecher ist ein allseitig geschlossenes Gebilde, dessen pigmentfreier Teil von einer Verschlußmembran, der sog. Cornealmembran, gebildet wird. Diese Verschlußmembran ist ein cytoplasmatischer, nichtpigmentierter, lamellar gebauter Fortsatz der Pigmentzellen. Der distale Fortsatz der Sehzellen dringt durch die Verschlußmembran in das Innere des Auges ein. Im Inneren des Pigmentbechers wird der Raum zwischen den Sehkolben vom homogenen Glaskörper ausgefüllt. Dieser zeigt in osmiumbehandelten Präparaten eine mittlere Dichte und mit stärkerer Vergrößerung eine sehr feine fibrilläre Struktur. Der kernhaltige Teil der Sehzellen liegt außerhalb des Pigmentbechers. Der Kern ist verhältnismäßig locker gebaut, enthält einen kleinen exzentrisch liegenden Nucleolus und wird von einer doppellamellär gebauten Kernmembran begrenzt. Das Perikaryon besitzt eine feinkörnige Grundstruktur. Die Durchmesser der Körnchen wechseln von 50 bis zu mehreren 100 Å; ihre Struktur zeigt einen Übergang über die Vesiculae zu den Vakuolen des Cytoplasmas. Die verschieden großen Vakuolen des Cytoplasmas sind von einer hellen, homogenen Substanz erfüllt. Das Perikaryon enthält auch Mitochondrien. Die Grundstruktur der distalen Fasern der Sehzellen ist ähnlich wie die des Perikaryons, enthält aber auch 100–120 Å dicke Neurofilamente. Die Nervenfasern sind nackt und recht verschieden dick. Die distale Faser der Sehzellen durchbohrt die Verschlußmembran und setzt sich in den Sehkolben fort. Der Stiel — bei Dugesia lugubris — ist prinzipiell ebenso gebaut wie die Nervenfaser; er ist ihre intraokulare Fortsetzung. Auf diesem Stielteil sitzt der eigentliche Sehkolben. Er besteht im allgemeinen aus 2 verschiedenen Teilen: aus der in der Fortsetzung des Stieles liegenden Achsenzone und aus der Zone des Bürstensaumes (Stiftchenkappe). In der Achse des Sehkolbens liegen viele Mitochondrien. Die Struktur des Cytoplasmas der Achsenzone ist ähnlich wie jene im Perikaryon bzw. in der Nervenfaser. Auffallend sind in der Achsenzone viele von einer hellen, homogenen Substanz erfüllte, verschieden große Vakuolen. Ihre Zahl hängt vom Funktionszustand des Auges ab. Die Randzone des Sehkolbens ist der Bürstensaum, der von cytoplasmatischen Mikrozotten gebildet wird. Die Breite der Mikrozotten wechselt von 200–1000 Å. Die Dicke der etwas dunkleren Grenzmembran beträgt 50–70 Å, der Inhalt der Mikrozotten erscheint homogen. Der Bürstensaum gibt im Polarisationsmikroskop eine positive Doppelbrechung. Die Bürstensaumzone, die eine Vergrößerung der Membranoberfläche bewirkt, dürfte im Dienste der Photorezeption stehen.  相似文献   

19.
Rollhäuser  H.  Kriz  W.  Heinke  W. 《Cell and tissue research》1964,64(3):381-403
Zusammenfassung Das Gefäßsystem der Rattenniere wurde mit Hilfe von Plastoid-, Tusche- und Gelatineinjektionen an 130 Tieren untersucht.Die zwei unterschiedlichen Kapillargebiete der Rinde, der rundmaschige Plexus des Labyrinthes und der langmaschige der Markstrahlen, werden beide durch direkte Äste aus den Vasa efferentia versorgt: sie sind im Zufluß somit parallelgeschaltet. Im Abfluß existiert diese Unabhängigkeit nicht: das Blut der Markstrahlkapillaren muß zum größten Teil über die Labyrinthkapillaren in die Venae interlobulares abfließen. Zum Teil gewinnen die Markstrahlkapillaren auch Anschluß an die aus dem Mark aufsteigenden venösen Vasa recta.Die Einteilung des Markes in Außenstreifen, Innenstreifen und Innenzone findet auch im Verhalten der Gefäße ihre Berechtigung: Zu- und Abfluß sowie die Art der Kapillarisierung der drei Markabschnitte sind sehr verschieden. Die zuführenden Gefäße sind die arteriellen Vasa recta, die sich ausschließlich aus den Vasa efferentia der juxtamedullären Glomerula bilden und sich dann bei der Versorgung der drei Markabschnitte stufenweise bis zur Papillenspitze hin aufbrauchen. Entsprechend der Aufzweigung der arteriellen Vasa recta bilden sich venöse Vasa recta in allen Teilen des Markes. Sie steigen im Mark auf, ohne sich zu vereinigen, und treten als geschlossene Phalanx in den Außenstreifen über. Hier vereinigen sie sich aufsteigend allmählich und münden in Venae interlobulares oder arcuatae. Die arteriellen und venösen Vasa recta für die bzw. aus der Innenzone durchlaufen den Innenstreifen gebündelt in kräftiger entwickeltem Bindegewebe. Zu- und Abfluß eines jeden der drei Markabschnitte geschieht somit niemals über Kapillaren eines der beiden anderen, sondern immer über Vasa recta. Es würde dies bedeuten, daß die drei Markabschnitte eine voneinander relativ unabhängige Blutversorgung hätten. Dies ist jedoch nicht der Fall, denn die Vasa recta sind nicht allein Verteilergefäße, sondern ihrem Baue nach gleichzeitig weitlumige Kapillaren. Da aber die Vasa recta der Innenzone den Innenstreifen gebündelt und damit weitgehend unabhängig von den Tubuli durchlaufen, ergibt sich dennoch eine funktionelle Trennung der Blutversorgung von Innenstreifen und Innenzone, während sich die Durchblutung von Innenstreifen und Außenstreifen aufsteigend vermischt.Die funktionellen Konsequenzen, die sich aus dieser sehr eigenartigen und komplexen Gefäßarchitektur des Markes ergeben, werden diskutiert.Herrn Professor Dr. med. Dr. h. c. mult. Friedrich Wassermann zum 80. Geburtstag in Verehrung und Dankbarkeit gewidmet.  相似文献   

20.
Zusammenfassung Die zur Tube ziehenden größeren Nervenäste beginnen schon in der Mesosalpinx sich aufzuteilen. Sie stehen durch Anastomosen untereinander in Verbindung. Die feineren sich absplitternden Fasern bilden einen dichten Plexus.Unter dem Peritoneum liegt der aus den größeren Nervenbündeln bestehende Grundplexus. Die Bündel teilen sich dichotomisch, und ein Teil der Nerven tritt in die Muskularis ein, um die Versorgung der Muskulatur zu übernehmen. In den Muskelschichten finden sich dichte Geflechte verschiedenster Anordnung wie auch feinste Nervenfasernetze unter Bildung von Knotenpunkten. Der Verlauf der Nervenfasern ist zum großen Teil parallel den Muskelelementen gerichtet. Sogenannte freie Nervenendigungen, ausgenommen kleine Endkörperchen, kommen nicht zu Gesicht. Der andere Teil der aus dem Grundplexus kommenden Nervenbündel durchquert die Muskularis und zieht direkt zur Mucosa. Hier formen sich die Nerven wieder, nach gleicher dichotomischer Aufteilung, zu feineren unregelmäßigen Geflechten bis zu feinsten Endnetzen, die hoch in die Schleimhautfalten hinaufragen. Intraepitheliale Fasern sind nicht zu beobachten. An den Verzweigungsstellen der Schleimhautfalten des den Fimbrien zugekehrten Drittels des ampullären Teiles der Tube liegen einzelne sensible Endkörperchen. Sie sind nach dem Typus einesMeissnerschen Körperchens gebaut.Die Nerven der Tube verlaufen in allen Schichten zum Teil mit den Gefäßeneinher. Sie zeigen einen mehr oder weniger stark welligen Verlauf.Einzelne markhaltige Fasern sind in allen Gewebsschichten der Tube vorhanden. Ganglienzellen finden sich nicht vor.Die Verteilungsdichte der Nerven in der Muskularis und in der Mucosa zeigt ein entgegengesetztes Verhalten; die Anzahl der Schleimhautnerven nimmt nämlich zum Uterus hin ab, während die Zahl der Nerven in der Muskulatur der Tube uterinwärts zunimmt.Die Nerven innerhalb der Muskelschicht der Tube sind größtenteils wohl motorischer Natur; die Schleimhautnerven stellen vielleicht einen rezeptorischen Apparat dar, um nach Eindringen des Eies die Peristaltik der Muskulatur auf reflektorischem Wege in Tätigkeit zu setzen. Vielleicht stehen sie aber auch mit dem Gefäßsystem in irgendwelchem Zusammenhang.Herrn Prof. Dr. Sobotta zum 60. Geburtstag gewidmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号