首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment.  相似文献   

2.
3.
4.
We have documented previously that glucocorticoid hormones modulate the posttranslational localization of cell surface mouse mammary tumor virus (MMTV) glycoproteins in the viral-infected M1.54 rat HTC hepatoma cell line. To determine whether glucocorticoids affect the trafficking of individually synthesized MMTV glycoproteins, HTC cells were transfected with a constitutively expressed MMTV glycoprotein gene lacking the viral phosphoprotein and polymerase genes. This construct also allows equivalent levels of MMTV glycoproteins to be compared in the presence or absence of glucocorticoids. Indirect immunofluorescence and immunoprecipitation of radiolabeled cells revealed that in transfected cells the transmembrane MMTV glycoproteins are efficiently expressed, transported to the cell surface, and proteolytically cleaved in the presence or in the absence of the synthetic glucocorticoid dexamethasone. Cell surface immunoprecipitation of [35S]methionine-labeled cells showed that the level of plasma membrane gp78 appeared to be stimulated 2-fold after dexamethasone treatment, even though fluorescence-activated cell sorting revealed no discernible change in the total concentration of cell surface MMTV glycoproteins. Analysis of oligosaccharide side chain maturation through a pulse-chase radiolabeling revealed that the rate of rough endoplasmic reticulum-Golgi transport was essentially identical in dexamethasone-treated and untreated transfected cells and was similar to that observed in dexamethasone-treated M1.54 cells. Thus, in contrast to viral-infected hepatoma cells, mostly constitutive cellular machinery mediates the trafficking and maturation of cell surface MMTV glycoproteins expressed outside of the proviral context. Taken together, our results suggest that the glucocorticoid-stimulated synthesis of nonglycosylated viral components may contribute to or be responsible for the regulated trafficking of MMTV glycoproteins observed in viral-infected rat hepatoma cells.  相似文献   

5.
Progression from a steroid sensitive to insensitive state is characteristic of breast tumors, but little is known about the molecular mechanisms involved. Changes in steroid receptor can be associated with the progression. This paper reviews the cell culture data pertaining to loss of response and concludes that loss of receptor is a consequence rather than a cause of insensitivity. This view is based on evidence that loss of all response parameters occurs despite the presence of fully functional receptors as determined by transfection experiments. The postreceptor defect appears to be at the level of the hormone response element of the responsive genes and may involve DNA methylation. The implications of the model for human breast cancer biology are discussed.  相似文献   

6.
The study of the antigen diversion of cells of rat hepatocellular tumors, which is caused by the expression of normal antigens peculiar to renal definitive tissues (so-called “heteroorganic renal antigens”) is continued. Using an immune serum of narrow specificity, in the plasma membrane fractions of Zajdela ascites hepatoma cells and of cultivated HTC hepatoma cells, heteroorganic antigens 110–115 and 125–130 kDa are revealed; the heteroorganic antigen 75–80 kDa is only detected for the Zajdela hepatoma cells. The participation of these heteroorganic antigens in the cell proliferation process is shown by the methods of radioisotope analysis and DNA flow cytometry.  相似文献   

7.
The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.  相似文献   

8.
9.
We have studied Ag-induced membrane potential changes of rat basophilic leukemia cells by using the potential-sensitive dye, bis-(1,3-diethylthiobarbiturate)trimethineoxonol. A rapid membrane depolarization is triggered by a multivalent Ag, and it has a bell-shaped dose dependence that parallels the degranulation response but not the extent of cross-linking of the IgE-receptor complexes. As the temperature is reduced from 37 degrees C, this depolarization response slows and decreases in magnitude until complete inhibition is observed at 15 degrees C, similar to the temperature dependence previously observed for the Ag-stimulated rise in cytoplasmic Ca2+ and for degranulation. The results imply that a highly temperature-dependent step subsequent to Ag binding and cross-linking is necessary for the depolarization response. A partial return to the resting potential is seen to follow the depolarization response to Ag. This repolarization process is inhibited by quinidine.HCl and Ba2+ in parallel with an inhibition of the degranulation response. Repolarization is not affected by 4-aminopyridine or by the absence of K+ in the external buffer. These data suggest that the repolarization is caused by a previously uncharacterized K+ channel.  相似文献   

10.
11.
12.
13.
14.
15.
Fucosylation is one of the most important oligosaccharide modifications and is involved in cancer and inflammation. Recently, fucosylated haptoglobin was identified as a possible tumor marker for pancreatic cancer. The molecular mechanism underlying increases in fucosylated haptoglobin in sera of patients with pancreatic cancer seems to be complicated. Our previous study [N. Okuyama, Y. Ide, M. Nakano, T. Nakagawa, K. Yamanaka, K. Moriwaki, K. Murata, H. Ohigashi, S. Yokoyama, H. Eguchi, O. Ishikawa, T. Ito, M. Kato, A. Kasahara, S. Kawano, J. Gu, N. Taniguchi, E. Miyoshi, Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation, Int. J. Cancer 118 (11) (2006) 2803-2808] demonstrated that pancreatic cancer cells secrete a factor, which induces the production of haptoglobin in hepatoma cells. In the present study, we found that interleukin 6 (IL6) expressed in pancreatic cancer is a factor that induces the haptoglobin production, using a neutralizing antibody for IL6. Real-time PCR analyses revealed the up-regulation of fucosylation regulatory genes after IL6 treatment, resulting increases in fucosylated haptoglobin being revealed by a lectin ELISA. This pathway could be one of the possible mechanisms underlying increases in haptoglobin in sera of patients with pancreatic cancer.  相似文献   

16.
The use of fluorescence recovery after photobleaching (FRAP) techniques to monitor the lateral mobility of plant lectin-receptor complexes on the surface of single, living mammalian cells is described in detail. FRAP measurements indicate that over 75% of the wheat germ agglutinin receptor (WGA-receptor) complexes on the surface of human embryo fibroblasts are mobile. These WGA-receptor complexes diffuse laterally (as opposed to flow) on the cell surface with a diffusion coefficient in the range of 2 × 10?11 to 2 × 10?10 cm2/sec. Both the percentage of mobile WGA-receptor complexes and the mean diffusion coefficient of these complexes are higher than that obtained from earlier FRAP measurements of the mobility of concanavalin A-receptor (Con A-receptor) complexes in a variety of cell types. The possible reasons for the differing mobilities of WGA and Con A receptors are discussed.  相似文献   

17.
18.
Alzheimer's disease (AD) is characterized by massive neuron loss in distinct brain regions, extracellular accumulations of the amyloid precursor protein-fragment amyloid-beta (A beta) and intracellular tau fibrils containing hyperphosphorylated tau. Experimental evidence suggests a relation between presenilin (PS) mutations, A beta formation, and tau phosphorylation in triggering cell death; however, how A beta and PS affect tau-dependent degeneration is unknown. Using herpes simplex virus 1-mediated gene-transfer of fluorescent-tagged tau constructs in primary cortical neurons, we demonstrate that tau expression exerts a neurotoxic effect that is increased with a construct mimicking disease-like hyperphosphorylation [pseudohyperphosphorylated (PHP) tau]. Live imaging revealed that PHP tau expression is associated with increased perikarya suggesting the development of a 'ballooned' phenotype as a specific feature of tau-mediated cell death. Transgenic expression of PS1 suppressed tau-induced neurodegeneration. In contrast, A beta amplified degeneration in the presence of wt tau but not of PHP tau. The data indicate that PS1 and A beta inversely modulate tau-dependent neurodegeneration at distinct steps. They indicate that the mode by which PHP tau causes neurotoxicity is downstream of A beta and that tau phosphorylation is the limiting factor in A beta-induced cell death. Suppression of tau expression or inhibition of tau phosphorylation at disease-relevant sites may provide an effective therapeutic strategy to prevent neurodegeneration in Alzheimer's disease.  相似文献   

19.
20.
The ST486 cell line, derived from a human Burkitt's lymphoma, is a model for antigen-induced clonal deletion in germinal center B-lymphocytes, with apoptosis induced upon cross-linking of surface IgM. Moreover, this cell line is highly sensitive to the induction of apoptosis by many chemicals, including sodium arsenite, a significant environmental contaminant with immunotoxic activity. In contrast to arsenite and other chemicals, surface IgM cross-linking induces apoptosis in ST486 cells with delayed kinetics. Moreover, the initial signaling events following IgM stimulation are associated with cell survival and proliferation and include activation of the extracellular-signal regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) pathways. We examined the question of whether IgM-mediated activation of the ERK and PI3K pathways can influence the apoptotic response of ST486 cells following exposure to arsenite and selected drugs with different molecular targets, including cycloheximide, etoposide, and camptothecin, and a physical stress, hyperthermia. Our findings show that IgM-stimulated cells are significantly protected against arsenite and drug-induced apoptosis during a window of several hours after surface IgM cross-linking, as evidenced by an inhibition of cleavage of poly(ADP-ribose) polymerase and lack of morphological changes indicative of apoptosis. Significantly, surface IgM cross-linking also protects against arsenite-induced mitochondrial depolarization as well as caspase-9 cleavage. Furthermore, we demonstrate that this IgM-mediated protection requires the activation of the ERK and PI3K pathways, because inhibition of either pathway blocks the ability of antigen receptor activation to protect against apoptosis. Our study also provides evidence for p90(S6) ribosomal kinase as a point of convergence between the two signaling pathways resulting in the phosphorylation of the pro-apoptotic Bcl-2 family member Bad at serine 112. This investigation demonstrates, for the first time, that specific signals transduced by activation of the B-cell receptor protect cells at a common point of regulation in the apoptotic pathways for diverse stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号