首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Regulation of the heart by the sympathetic nervous system, fundamental to the physiological response to stress and exercise, requires coordinated phosphorylation of multiple downstream molecular targets, including the I(Ks) (slowly activating potassium current) channel. Sympathetic nervous system stimulation increases intracellular cAMP for which targeted regulation is directed in large part by distinct scaffold or anchoring proteins. Yotiao is an A-kinase-anchoring protein (AKAP) that recruits the cyclic AMP-dependent protein kinase (protein kinase A (PKA)) and protein phosphatase 1 to the carboxyl terminus of the I(Ks) channel to form a molecular complex and control its phosphorylation state, crucial to the cardiac cellular response to sympathetic nervous system stimulation. Here we report that Yotiao itself is a substrate for PKA phosphorylation, and we identify a Yotiao amino-terminal (N-T) residue (Ser-43) that is PKA-phosphorylated in response to beta-adrenergic receptor stimulation. The replacement of Ser-43 by Ala ablates the PKA phosphorylation of N-T Yotiao and markedly diminishes the functional response of the wild type and pseudo-phosphorylated I(Ks) channel to cAMP but neither prevents the PKA phosphorylation of KCNQ1 nor its binding to Yotiao. These results suggest, for the first time, a critical role for the PKA phosphorylation of an AKAP in the functional regulation of an ion channel protein and postphosphorylation allosteric modulation of the I(Ks) channel by Yotiao.  相似文献   

2.
Long Q-T mutant (KvLQT1) K(+) channels associate with their regulatory subunit IsK to produce the slow component of the delayed rectifier potassium (I(Ks)) cardiac current. The amplitude of KvLQT1 current depends on the expression of a KvLQT1 splice variant (isoform 2) that exerts strong dominant negative effects on the full-length KvLQT1 protein (isoform 1). We used RNase protection assays to determine the relative expression of KvLQT1 isoforms 1 and 2 and IsK mRNAs in human ventricular layers. Overall expression of KvLQT1 and IsK genes was similar in the three layers. However, there was a significant difference in the ratio between KvLQT1 isoforms 1 and 2. Isoform 2 represented 25.2 +/- 2.3%, 31.7 +/- 1.2%, and 24.9 +/- 1.7% of total KvLQT1 expression in left ventricular endocardial, midmyocardial, and epicardial tissues, respectively. Similar data were obtained from right ventricular samples. COS-7 cells were intranuclearly injected with KvLQT1 isoforms 1 or 2 plus IsK cDNAs, using two different isoform 2-to-isoform 1 ratios. Cells injected with an isoform 2-to-isoform 1 ratio mimicking that in the midmyocardium showed a K(+) current with approximately 75% reduced amplitude compared with those injected with a ratio mimicking that in the epicardium. Our results suggest that differential expression of KvLQT1 isoform 2 in endocardial, midmyocardial, and epicardial tissues is responsible for differential I(Ks) amplitude and contributes to the regional action potential heterogeneity observed across the ventricular wall.  相似文献   

3.
Adrenergic stimulation of the heart initiates a signaling cascade in cardiac myocytes that increases the concentration of cAMP. Although cAMP elevation may occur over a large area of a target-organ cell, its effects are often more restricted due to local concentration of its main effector, protein kinase A (PKA), through A-kinase anchoring proteins (AKAPs). The HERG potassium channel, which produces the cardiac rapidly activating delayed rectifying K(+) current (I (Kr)), is a target for cAMP/PKA regulation. PKA regulation of the current may play a role in the pathogenesis of hereditary and acquired abnormalities of the channel leading to cardiac arrhythmia. We examined the possible role for AKAP-mediated regulation of HERG channels. Here, we report that the PKA-RII-specific AKAP inhibitory peptide AKAP-IS perturbs the distribution of PKA-RII and diminishes the PKA-dependent phosphorylation of HERG protein. The functional consequence of AKAP-IS is a reversal of cAMP-dependent regulation of HERG channel activity. In further support of AKAP-mediated targeting of kinase to HERG, PKA activity was coprecipitated from HERG expressed in HEK cells. Velocity gradient centrifugation of solubilized porcine cardiac membrane proteins showed that several PKA-RI and PKA-RII binding proteins cosediment with ERG channels. A physical association of HERG with several specific AKAPs with known cardiac expression, however, was not demonstrable in heterologous cotransfection studies. These results suggest that one or more AKAP(s) targets PKA to HERG channels and may contribute to the acute regulation of I (Kr) by cAMP.  相似文献   

4.
The cyclic adenosine monophosphate (cAMP)‐dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A‐kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the β‐adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP‐associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias.  相似文献   

5.
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.  相似文献   

6.
Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding domains of different AKAPs is unknown, and mechanisms that regulate AKAP-PKA affinity are not clearly defined. Using surface plasmon resonance (SPR) spectroscopy, we measured real-time kinetics of RII interaction with various AKAPs. Base-line equilibrium binding constants (K(d)) for RII binding to Ht31, mAKAP, and AKAP15/18 were 10 nm, 119 nm, and 6.6 microm, respectively. PKA stimulation of intact Chinese hamster ovary cells increased RIIalpha binding to AKAP100/mAKAP and AKAP15/18 by approximately 7- and 82-fold, respectively. These results suggest that differences in primary sequence of the RII-binding domain may be responsible for the selective affinity of RII for different AKAPs. Furthermore, RII autophosphorylation may provide additional localized regulation of kinase anchoring. In cardiac myocytes, disruption of RII-AKAP interaction decreased PKA phosphorylation of the PKA substrate, myosin-binding protein C. Thus, these mechanisms may be involved in adding additional specificity in intracellular signaling in diverse cell types and under conditions of cAMP/PKA activation.  相似文献   

7.
Cardiac function is regulated critically by the autonomic nervous system to adapt to the physical activity and emotional stress. A slowly activating cardiac potassium channel (I(Ks)) is modulated by stimulation of the sympathetic nervous system (SNS) and contributes to cardiac action potential shortening in the face of concomitant increases in heart rate. Activation of beta-adrenergic receptors in response to SNS stimulation results in protein kinase A (PKA)-mediated phosphorylation of I(Ks) channels. We have found that the functional regulation of the I(Ks) channel by PKA requires the A kinase-anchoring protein (AKAP) Yotiao. Yotiao forms a macromolecular complex with the channel and recruits key enzymes such as PKA and protein phosphatase 1 (PP1) to control the phosphorylation state of I(Ks). Our recent findings revealed a more active role of Yotiao in the PKA modulation of I(Ks). We found that Yotiao participates actively in translating the phosphorylation-induced change into altered channel activity. Moreover Yotiao itself can be phosphorylated by PKA upon beta-adrenergic stimulation. Ablation of Yotiao phosphorylation impairs PKA-induced changes in I(Ks) voltage-dependent activation and current kinetics. Taken together we have evidence to suggest that Yotiao plays dual roles in the PKA modulation of the I(Ks) channel. It acts not only as an adaptor protein to coordinate enzymatic reactions but also as an active regulator that directly affects channel function.  相似文献   

8.
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.  相似文献   

9.
The IsK protein associates with KvLQT1 potassium channels to generate the slow component of the outward rectifying K(+) current involved in human cardiac repolarization. Mutations in either KCNE1 (encoding IsK) or KCNQ1 (encoding KvLQT1) genes have been associated with the long QT syndrome, a genetic disorder leading to prolonged cardiac repolarization and sudden death. We now report that the IsK protein is also involved in mature T cell homeostasis. In KCNE1 gene knockout mice, we observed a significant increase in the T cell compartment. Thymus and peripheral lymphoid organs of KCNE1-/- mice displayed a significant increase in mature T cells. The immunological phenotype of KCNE1-/- is age-dependent and only expressed in adult mice. Both IsK and KvLQT1 mRNA are expressed in murine thymus. Our data suggest that, in addition to its role in myocardial repolarization, the IsK-KvLQT1 tandem also plays a crucial role in T cell homeostasis.  相似文献   

10.
In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigated the effect of two mainstream pathways initiated by cAMP, cAMP-dependent protein kinase (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) on PKB/Akt phosphorylation in primary cortical neurons and HT-4 cells. We demonstrate that PKA activation leads to a reduction of PKB/Akt phosphorylation, whereas activation of Epac has the opposite effect. This effect of Epac on PKB/Akt phosphorylation was mediated by Rap activation. The increase in PKB/Akt phosphorylation after Epac activation could be blocked by pretreatment with Epac2 siRNA and to a somewhat smaller extent by Epac1 siRNA. PKA, PKB/Akt and Epac were all shown to establish complexes with neuronal A-kinase anchoring protein150 (AKAP150). Interestingly, activation of Epac increased phosphorylation of PKB/Akt complexed to AKAP150. From experiments using PKA-binding deficient AKAP150 and peptides disrupting PKA anchoring to AKAPs, we conclude that AKAP150 acts as a key regulator in the two cAMP pathways to control PKB/Akt phosphorylation.  相似文献   

11.
12.
The spatiotemporal regulation of cAMP can generate microdomains just beneath the plasma membrane where cAMP increases are larger and more dynamic than those seen globally. Real-time measurements of cAMP using mutant cyclic nucleotide-gated ion channel biosensors, pharmacological tools and RNA interference (RNAi) were employed to demonstrate a subplasmalemmal cAMP signaling module in living cells. Transient cAMP increases were observed upon stimulation of HEK293 cells with prostaglandin E1. However, pretreatment with selective inhibitors of type 4 phosphodiesterases (PDE4), protein kinase A (PKA) or PKA/A-kinase anchoring protein (AKAP) interaction blocked an immediate return of subplasmalemmal cAMP to basal levels. Knockdown of specific membrane-associated AKAPs using RNAi identified gravin (AKAP250) as the central organizer of the PDE4 complex. Co-immunoprecipitation confirmed that gravin maintains a signaling complex that includes PKA and PDE4D. We propose that gravin-associated PDE4D isoforms provide a means to rapidly terminate subplasmalemmal cAMP signals with concomitant effects on localized ion channels or enzyme activities.  相似文献   

13.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   

14.
Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.  相似文献   

15.
In ventricular myocytes, α1-AR stimulates Gas proteins and reduces the transient outward K+ current (Ito) via a cAMP/PKA-mediated pathway and thus regulates cardiac contraction and excitability. This Ito reduction is compartmentalized and limited to discrete membrane regions since PKA-dependent phosphorylation of the Ito channels after α1-AR stimulation requires the integrity of both the sarcoplasmic membrane and the cytoskeleton. The aim of this work was to investigate the mechanisms involved in the compartmentalization of the PKA-dependent modulation of Ito in response to α1-AR activation. Ito current recordings were performed by the Patch-Clamp technique. Membrane rafts from isolated ventricular myocytes were extracted by centrifugation in a sucrose density gradient. The different proteins were visualized by western blot and protein-protein interactions determined by coimmunoprecipitation experiments. Localization of Ito channel in caveolae, particular subtypes of membrane rafts, was achieved by electron microscopy. Patch-Clamp recordings show that a functional supramolecular complex, kept together by the A kinase anchoring protein AKAP100, exist in caveolae in living myocytes. Density gradients and immunoprecipitation experiments show that the components of the a1-AR/Ito pathway localize in caveolae, forming two different groups of proteins. The KV4.2/KV4.3 channel forms a supramolecular complex with PKA through AKAP100 and is attached to caveolae by interacting with caveolin-3. On the other hand, α1-AR, Gas and adenylate cyclase gather in a second group also connected to caveolin-3. Therefore, both groups of preassembled proteins are maintained in close proximity by caveolin-3. A different Ito channel population localizes in non-caveolar membrane rafts and is not sensitive to a1-adrenergic regulation.  相似文献   

16.
KCNQ1 is the human gene responsible in most cases for the long QT syndrome, a genetic disorder characterized by anomalies in cardiac repolarization leading to arrhythmias and sudden death. KCNQ1 encodes a pore-forming K+ channel subunit termed KvLQT1 which, in association with its regulatory beta-subunit IsK (also called minK), produces the slow component of the delayed-rectifier cardiac K+ current. We used in situ hybridization to localize KvLQT1 and IsK mRNAs in various tissues from adult mice. We showed that KvLQT1 mRNA expression is widely distributed in epithelial tissues, in the absence (small intestine, lung, liver, thymus) or presence (kidney, stomach, exocrine pancreas) of its regulator IsK. In the kidney and the stomach, however, the expression patterns of KvLQT1 and IsK do not coincide. In many tissues, in situ data obtained with the IsK probe coincide with beta-galactosidase expression in IsK-deficient mice in which the bacterial lacZ gene has been substituted for the IsK coding region. Because expression of KvLQT1 in the presence or absence of its regulator generates a K+ current with different biophysical characteristics, the role of KvLQT1 in epithelial cells may vary depending on the expression of its regulator IsK. The high level of KvLQT1 expression in epithelial tissues is consistent with its potential role in K+ secretion and recycling, in maintaining the resting potential, and in regulating Cl- secretion and/or Na+ absorption.  相似文献   

17.
Kinase anchoring has gained acceptance as a means to synchronize spatial and temporal aspects of cell signaling. A-kinase anchoring proteins (AKAPs) are a diverse group of functionally related proteins that target protein kinase A and other enzymes to coordinate a range of signaling events. Recent advances in this field have shown that incorporating phosphodiesterases into AKAP signaling complexes exerts local control of cAMP metabolism, that phosphorylation of some AKAPs potentiates downstream signaling events, that anchoring of distinct enzyme combinations functions as a mechanism to expand the repertoire of cellular events controlled by a single AKAP, and that fluorescent biosensors can be used to visualize dynamic aspects of localized cAMP signaling.  相似文献   

18.
A型激酶锚定蛋白(A-kinase anchoring proteins,AKAPs)是一类结构不同而功能相关的蛋白家族,其主要功能是将cAMP依赖性蛋白激酶A(PKA)锚定于特定的亚细胞结构.PKA是第二信使cAMP的主要效应器,而AKAPs在靶向定位和调节PKA介导的磷酸化事件方面扮演重要角色. AKAPs更为重要的功能是与多种信号分子形成信号复合物,从时间和空间上整合cAMP-PKA和其他信号途径.本文将对AKAPs及其信号复合物的结构特点和参与细胞信号转导的功能机制及其研究现状进行概述.  相似文献   

19.
The scaffolding protein Yotiao is a member of a large family of protein A-kinase anchoring proteins with important roles in the organization of spatial and temporal signaling. In heart, Yotiao directly associates with the slow outward potassium ion current (I(Ks)) and recruits both PKA and PP1 to regulate I(Ks) phosphorylation and gating. Human mutations that disrupt I(Ks)-Yotiao interaction result in reduced PKA-dependent phosphorylation of the I(Ks) subunit KCNQ1 and inhibition of sympathetic stimulation of I(Ks), which can give rise to long-QT syndrome. We have previously identified a subset of adenylyl cyclase (AC) isoforms that interact with Yotiao, including AC1-3 and AC9, but surprisingly, this group did not include the major cardiac isoforms AC5 and AC6. We now show that either AC2 or AC9 can associate with KCNQ1 in a complex mediated by Yotiao. In transgenic mouse heart expressing KCNQ1-KCNE1, AC activity was specifically associated with the I(Ks)-Yotiao complex and could be disrupted by addition of the AC9 N terminus. A survey of all AC isoforms by RT-PCR indicated expression of AC4-6 and AC9 in adult mouse cardiac myocytes. Of these, the only Yotiao-interacting isoform was AC9. Furthermore, the endogenous I(Ks)-Yotiao complex from guinea pig also contained AC9. Finally, AC9 association with the KCNQ1-Yotiao complex sensitized PKA phosphorylation of KCNQ1 to β-adrenergic stimulation. Thus, in heart, Yotiao brings together PKA, PP1, PDE4D3, AC9, and the I(Ks) channel to achieve localized temporal regulation of β-adrenergic stimulation.  相似文献   

20.
Compartmentalization of protein kinases with substrates is a mechanism that may promote specificity of intracellular phosphorylation events. We have cloned a low-molecular weight A-kinase Anchoring Protein, called AKAP18, which targets the cAMP-dependent protein kinase (PKA) to the plasma membrane, and permits functional coupling to the L-type calcium channel. Membrane anchoring is mediated by the first 10 amino acids of AKAP18, and involves residues Gly1, Cys4 and Cys5 which are lipid-modified through myristoylation and dual palmitoylation, respectively. Transient transfection of AKAP18 into HEK-293 cells expressing the cardiac L-type Ca2+ channel promoted a 34 9% increase in cAMP-responsive Ca2+ currents. In contrast, a targeting-deficient mutant of AKAP18 had no effect on Ca2+ currents in response to the application of a cAMP analog. Further studies demonstrate that AKAP18 facilitates GLP-1-mediated insulin secretion in a pancreatic beta cell line (RINm5F), suggesting that membrane anchoring of the kinase participates in physiologically relevant cAMP-responsive events that may involve ion channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号