首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR x stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of -60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects (P <.023), HR was greater (P <.002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts x min(-1) x mmHg(-1); after bed rest 0.035 bursts x min(-1) x mmHg(-1); P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.  相似文献   

2.
Women have a greater incidence of orthostatic intolerance than men. We hypothesized that this difference is related to hemodynamic effects on regulation of cardiac filling rather than to reduced responsiveness of vascular resistance during orthostatic stress. We constructed Frank-Starling curves from pulmonary capillary wedge pressure (PCWP), stroke volume (SV), and stroke index (SI) during lower body negative pressure (LBNP) and saline infusion in 10 healthy young women and 13 men. Orthostatic tolerance was determined by progressive LBNP to presyncope. LBNP tolerance was significantly lower in women than in men (626.8 +/- 55.0 vs. 927.7 +/- 53.0 mmHg x min, P < 0.01). Women had steeper maximal slopes of Starling curves than men whether expressed as SV (12.5 +/- 2.0 vs. 7.1 +/- 1.5 ml/mmHg, P < 0.05) or normalized as SI (6.31 +/- 0.8 vs. 4.29 +/- 0.6 ml.m-2.mmHg-1, P < 0.05). During progressive LBNP, PCWP dropped quickly at low levels, and reached a plateau at high levels of LBNP near presyncope in all subjects. SV was 35% and SI was 29% lower in women at presyncope (both P < 0.05). Coincident with the smaller SV, women had higher heart rates but similar mean arterial pressures compared with men at presyncope. Vascular resistance and plasma norepinephrine concentration were similar between genders. We conclude that lower orthostatic tolerance in women is associated with decreased cardiac filling rather than reduced responsiveness of vascular resistance during orthostatic challenges. Thus cardiac mechanics and Frank-Starling relationship may be important mechanisms underlying the gender difference in orthostatic tolerance.  相似文献   

3.
Effects of 18 days of bed rest on leg and arm venous properties.   总被引:3,自引:0,他引:3  
Venous function may be altered by bed rest deconditioning. Yet the contribution of altered venous compliance to the orthostatic intolerance observed after bed rest is uncertain. The purpose of this study was to assess the effect of 18 days of bed rest on leg and arm (respectively large and small change in gravitational gradients and use patterns) venous properties. We hypothesized that the magnitude of these venous changes would be related to orthostatic intolerance. Eleven healthy subjects (10 men, 1 woman) participated in the study. Before (pre) and after (post) 18 days of 6 degrees head-down tilt bed rest, strain gauge venous occlusion plethysmography was used to assess limb venous vascular characteristics. Leg venous compliance was significantly decreased after bed rest (pre: 0.048 +/- 0.007 ml x 100 ml(-1) x mmHg(-1), post: 0.033 +/- 0.007 ml x 100 ml(-1) x mmHg(-1); P < 0.01), whereas arm compliance did not change. Leg venous flow resistance increased significantly after bed rest (pre: 1.73 +/- 1.08 mmHg x ml(-1) x 100 ml x min, post: 3.10 +/- 1.00 mmHg x ml(-1) x 100 ml x min; P < 0.05). Maximal lower body negative pressure tolerance, which was expressed as cumulative stress index (pressure x time), decreased in all subjects after bed rest (pre: 932 mmHg x min, post: 747 mmHg x min). The decrease in orthostatic tolerance was not related to changes in leg venous compliance. In conclusion, this study demonstrates that after bed rest, leg venous compliance is reduced and leg venous outflow resistance is enhanced. However, these changes are not related to measures of orthostatic tolerance; therefore, alterations in venous compliance do not to play a major role in orthostatic intolerance after 18 days of head-down tilt bed rest.  相似文献   

4.
We quantified the impact of a 60-day head-down tilt bed rest (HDBR) with countermeasures on the arterial response to supine lower body negative pressure (LBNP). Twenty-four women [8 control (Con), 8 exercise + LBNP (Ex-LBNP), and 8 nutrition (Nut) subjects] were studied during LBNP (0 to -45 mmHg) before (pre) and on HDBR day 55 (HDBR-55). Left ventricle diastolic volume (LVDV) and mass, flow velocities in the middle cerebral artery (MCA flow) and femoral artery (femoral flow), portal vein cross-sectional area (portal flow), and lower limb resistance (femoral resistance index) were measured. Muscle sympathetic nerve activity (MSNA) was measured in the fibular nerve. Subjects were identified as finishers or nonfinishers of the 10-min post-HDBR tilt test. At HDBR-55, LVDV, mass, and portal flow were decreased from pre-HDBR (P < 0.05) in the Con and Nut groups only. During LBNP at HDBR-55, femoral and portal flow decreased less, whereas leg MSNA increased similarly, compared with pre-HDBR in the Con, Nut, and NF groups; 11 of 13 nonfinishers showed smaller LBNP-induced reductions in both femoral and portal flow (less vasoconstriction), whereas 10 of 11 finishers maintained vasoconstriction in either one or both regions. The relative distribution of blood flow in the cerebral versus portal and femoral beds during LBNP [MCA flow/(femoral + portal flow)] increased or reduced < 15% from pre-HDBR in 10 of 11 finishers but decreased > 15% from pre-HDBR in 11 of 13 nonfinishers. Abnormal vasoconstriction in both the portal and femoral vascular areas was associated with orthostatic intolerance. The vascular deconditioning was partially prevented by Ex-LBNP.  相似文献   

5.
The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.  相似文献   

6.
Lower body negative pressure (LBNP) was used during the Mir spaceflight in a study of orthostatic tolerance. Hemodynamic responses were measured including heart rate, blood pressure, cerebral artery blood flow, and lower limb vascular resistance. Results showed that femoral flow volume decreased, which may be due to hypovolemia and reduced cardiac output. Additional changes in femoral vascular response and cerebral to femoral blood flow are discussed.  相似文献   

7.
Head-up tilt table experiments conducted in astronauts prior to and immediately after the NASA Neurolab Space Mission (STS-90) revealed that a reduction in stroke volume induced by moving from the supine to upright posture was associated with increased muscle sympathetic nerve activity (MSNA). Although this finding was not unexpected, lower average stroke volume and greater average MSNA measured after space flight in both supine and upright postures were positioned in a linear fashion on the same stroke volume-MSNA stimulus-response relationship as the average pre-flight stroke volume and MSNA responses. Since all astronauts who participated in the Neurolab orthostatic experiments completed the 10-min tilt table tests, these observations supported the notion that sympathetic reflex responses were not altered but functioned adequately after space flight in non-presyncopal subjects. In contrast to the Neurolab results, development of orthostatic hypotension and presyncopal events reported in astronauts during standing after space flight have been accompanied by attenuated peripheral vasoconstriction and less elevation in plasma concentrations of norepinephrine. The association between circulating norepinephrine (NE) and peripheral vascular resistance in presyncopal astronauts after space flight led to the conclusion that postflight presyncope can be attributed to a combination of inherently low-resistance responses, a strong dependence on volume status, and relative hypoadrenergic function. In the present investigation, we used graded levels of lower body negative pressure (LBNP) to produce linear reductions in stroke volume and performed direct measurements of MSNA to test the hypotheses that (1) elevations in MSNA during central hypovolemia are proportional (i.e., linear) with reductions in stroke volume and; (2) that the slope of the stroke volume-MSNA relationship will be reduced in presyncopal subjects.  相似文献   

8.
We tested the hypothesis that orthostatic stress would modulate the arterial baroreflex (ABR)-mediated beat-by-beat control of muscle sympathetic nerve activity (MSNA) in humans. In 12 healthy subjects, ABR control of MSNA (burst incidence, burst strength, and total activity) was evaluated by analysis of the relation between beat-by-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (CON) and at two levels of lower body negative pressure (LBNP: -15 and -35 mmHg). At -15 mmHg LBNP, the relation between burst incidence (bursts per 100 heartbeats) and DAP showed an upward shift from that observed during CON, but the further shift seen at -35 mmHg LBNP was only marginal. The relation between burst strength and DAP was shifted upward at -15 mmHg LBNP (vs. CON) and further shifted upward at -35 mmHg LBNP. At -15 mmHg LBNP, the relation between total activity and DAP was shifted upward from that obtained during CON and further shifted upward at -35 mmHg LBNP. These results suggest that ABR control of MSNA is modulated during orthostatic stress and that the modulation is different between a mild (nonhypotensive) and a moderate (hypotensive) level of orthostatic stress.  相似文献   

9.
To assess if propranolol influences orthostatic intolerance induced by prolonged bed rest (BR), a lower body negative pressure test (LBNP) and left ventricular (LV) echocardiography before and during -40mmHg of LBNP were performed with and without intravenous propranolol administration (0.04mg/kg) in 9 healthy volunteers (mean age: 21 years) before and after 20 days BR. LBNP tolerance time (LBNP-T), endpoint heart rate(HR), and percentage changes from 0 to -40mmHg LBNP in HR, LV diastolic dimension(LVDd), stroke volume (SV), cardiac output (CO), and systemic vascular resistance(SVR) were measured. After BR, percentage changes in CO during LBNP was not altered by propranolol (-12+/-21% vs. -24+/-24%; with and without propranolol; p>0.05) because the effect on percentage changes in HR (18+/-11% vs. 26+/-12%; p<0.05) cancelled out the effects of percentage changes in LVDd (-9+/-6% vs. -15+/-10%; p<0.05) and percentage changes in SV (-26+/-16% vs. -39+/-22%; p<0.05). In addition, propranolol decreased end-point HR (85+/-15bpm vs. 119+/-l4bpm; p<0.05) and percentage changes in SVR (25+/-32% vs. 53+/-57%; p<0.05). As a result, LBNP-T after BR was unchanged by propranolol (8.8+/-3.3min vs. 10.8+/-5.0min; p>0.05). In conclusion, propranolol failed to change orthostatic intolerance induced by BR.  相似文献   

10.
Acute alcohol consumption is reported to decrease mean arterial pressure (MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated syncope. Muscle sympathetic nerve activity (MSNA) increases during orthostatic stress to help maintain MAP, yet the effects of alcohol on MSNA responses during orthostatic stress have not been determined. We hypothesized that alcohol ingestion would blunt arterial blood pressure and MSNA responses to lower body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects (age 24 ± 1 yr). After an initial progressive LBNP (pretreatment), subjects consumed either alcohol (0.8 g ethanol/kg body mass; n = 15) or placebo (n = 15), and progressive LBNP was repeated (posttreatment). Alcohol increased resting HR (59 ± 2 to 65 ± 2 beats/min, P < 0.05), MSNA (13 ± 3 to 19 ± 4 bursts/min, P < 0.05), and MSNA burst latency (1,313 ± 16 to 1,350 ± 17 ms, P < 0.05) compared with placebo (group × treatment interactions, P < 0.05). During progressive LBNP, a pronounced decrease in MAP was observed after alcohol but not placebo (group × time × treatment, P < 0.05). In contrast, MSNA and HR increased during all LBNP protocols, but there were no differences between trials or groups. However, alcohol altered MSNA burst latency response to progressive LBNP. In conclusion, the lack of MSNA adjustment to a larger drop in arterial blood pressure during progressive LBNP, coupled with altered sympathetic burst latency responses, suggests that alcohol blunts MSNA responses to orthostatic stress.  相似文献   

11.
卧床前后压力感受性反射机能变化的研究   总被引:2,自引:0,他引:2  
许多数据表明长期失重以后立位耐力降低可能与压力感受性反射功能的改变有关。本文比较了两组被试者15天低动力卧床前后的立位耐力。以血压调节模型为基础分析了两种不同方式卧床前后单纯立位和下身负压加立位时压力感受性反射功能的改变,并用颈部加压及下身负压对中枢调节功能改变进行了观察。结果表明严格的头低位卧床后,立位耐力下降及压力感受性反射功能改变明显大于半日平卧半日倚坐者。而压力感受性反射功能的改变,特别是中枢神经系统调节功能的紊乱,是卧床后立位耐力降低的主要原因。从这种考虑为基础,作者提出了改变失重或模拟失重状态下的血液分布,调整对压力感受器的刺激,可能是预防心血管失调的有效方法。  相似文献   

12.
Orthostatic intolerance follows actual weightlessness and weightlessness simulated by bed rest. Orthostasis immediately after acute exercise imposes greater cardiovascular stress than orthostasis without prior exercise. We hypothesized that 5 min/day of simulated orthostasis [supine lower body negative pressure (LBNP)] immediately following LBNP exercise maintains orthostatic tolerance during bed rest. Identical twins (14 women, 16 men) underwent 30 days of 6 degrees head-down tilt bed rest. One of each pair was randomly selected as a control, and their sibling performed 40 min/day of treadmill exercise while supine in 53 mmHg (SD 4) [7.05 kPa (SD 0.50)] LBNP. LBNP continued for 5 min after exercise stopped. Head-up tilt at 60 degrees plus graded LBNP assessed orthostatic tolerance before and after bed rest. Hemodynamic measurements accompanied these tests. Bed rest decreased orthostatic tolerance time to a greater extent in control [34% (SD 10)] than in countermeasure subjects [13% (SD 20); P < 0.004]. Controls exhibited cardiac stroke volume reduction and relative cardioacceleration typically seen after bed rest, yet no such changes occurred in the countermeasure group. These findings demonstrate that 40 min/day of supine LBNP treadmill exercise followed immediately by 5 min of resting LBNP attenuates, but does not fully prevent, the orthostatic intolerance associated with 30 days of bed rest. We speculate that longer postexercise LBNP may improve results. Together with our earlier related studies, these ground-based results support spaceflight evaluation of postexercise orthostatic stress as a time-efficient countermeasure against postflight orthostatic intolerance.  相似文献   

13.
Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.  相似文献   

14.
To evaluate the effects of 20 days bed rest (BR) on cardiovascular system in normal subjects, left ventricular (LV) echocardiography and vascular ultrasound of the common carotid artery and abdominal aorta were performed during rest and a supine lower body negative pressure (LBNP) test in 14 healthy volunteers (mean age: 22 years) before and after BR. After BR, heart rates (HR) at rest and during LBNP (-40 mmHg) increased. In contrast, LV dimensions, stroke volume, and blood pressures decreased both at rest and during LBNP. Also LBNP tolerance time decreased after BR. Although resting cardiac output (CO) and abdominal aortic flow decreased after bed rest, CO and abdominal aortic flow were unchanged during LBNP comparing before and after BR. Common carotid artery flows both at rest and during LBNP showed no change after BR. LBNP did not increase HR before BR, but increased HR prominently after BR. In conclusion, LBNP tolerance time and LV size during LBNP decreased after BR, suggesting orthostatic intolerance due to a decreased blood volume. However, CO and flow in the abdominal aorta and common carotid artery during LBNP were similar before and after BR due to a compensatory increase after BR.  相似文献   

15.
We have recently summarized our data concerning endurance exercise training and its effect on blood pressure regulation during lower body negative pressure (LBNP). We found that endurance trained (ET) subjects were less tolerant to LBNP than their untrained (UT) counterparts. This decreased tolerance to LBNP was linked to a fitness related adaptation in cardiac compliance, an attenuated cardiopulmonary reflex regulation of peripheral vasoconstriction and an attenuated aortic-cardiac reflex. More recently we have found that 15 days of bed rest deconditioning (a severe form of detraining) in UT subjects resulted in a more responsive aortic-cardiac reflex. In severe detraining investigations, spaceflight and bed rest deconditioning a reduction in total blood and plasma volume were the manifest physiological changes. Therefore, we postulate that the increased aortic-reflex responsiveness was a compensation for the blood and plasma volume losses associated with detraining. Subsequently, we hypothesized that a generalized reduction of the normal daily aerobic activities of a healthy, young adult population would produce a moderate reduction in total blood and plasma volume and an up-regulation of the reflex blood pressure regulatory mechanisms.  相似文献   

16.
We tested whether hepatic blood flow is altered following central hypovolemia caused by simulated orthostatic stress. After 30 min of supine rest, hemodynamic, plasma density, and indocyanine green (ICG) clearance responses were determined during and after release of a 15-min 40 mmHg lower body negative pressure (LBNP) stimulus. Plasma density shifts and the time course of plasma ICG concentration were used to assess intravascular volume and hepatic perfusion changes. Plasma volume decreased during LBNP (-10%) as did cardiac output (-15%), whereas heart rate (+14%) and peripheral resistance (+17%) increased, as expected. On the basis of ICG elimination, hepatic perfusion decreased from 1.67 +/- 0.32 (pre-LBNP control) to 1.29 +/- 0.26 l/min (-22%) during LBNP. Immediately after LBNP release, we found hepatic perfusion 25% above control levels (to 2.08 +/- 0.48 l/min, P = 0.0001). Hepatic vascular conductance after LBNP was also significantly higher than during pre-LBNP control (21.4 +/- 5.4 vs. 17.1 +/- 3.1 ml.min(-1).mmHg(-1), P < 0.0001). This indicates autoregulatory vasodilatation in response to relative ischemia during a stimulus that has cardiovascular effects similar to normal orthostasis. We present evidence for physiological post-LBNP reactive hyperemia in the human liver. Further studies are needed to quantify the intensity of this response in relation to stimulus duration and magnitude, and clarify its mechanism.  相似文献   

17.
This study tested the hypothesis that reduction in cerebral blood flow (CBF) during orthostatic stress after bed rest can be ameliorated with volume loading, exercise, or both. Transcranial Doppler was used to measure changes in CBF velocity during lower body negative pressure (LBNP) before and after an 18-day bed rest in 33 healthy subjects. Subjects were assigned into four groups with similar age and sex: 1) supine cycling during bed rest (Exercise group; n = 7), 2) volume loading with Dextran infusion after bed rest to restore reduced left ventricular filling pressure (Dextran group; n = 7), 3) exercise combined with volume loading to prevent orthostatic intolerance (Ex-Dex group; n = 7), and 4) a control group (n = 12). LBNP tolerance was measured using a cumulative stress index (CSI). After bed rest, CBF velocity was reduced at a lower level of LBNP in the Control group, and the magnitude of reduction was greater in the Ex-Dex group. However, reduction in orthostatic tolerance was prevented in the Ex-Dex group. Notably, volume loading alone prevented greater reductions in CBF velocity after bed rest, but CSI was reduced still by 25%. Finally, decreases in CBF velocity during LBNP were correlated with reduction in cardiac output under all conditions (r(2) = 0.86; P = < 0.001). Taken together, these findings demonstrate that volume loading alone can ameliorate reductions in CBF during LBNP. However, the lack of associations between changes in CBF velocity and orthostatic tolerance suggests that reductions in CBF during LBNP under steady-state conditions by itself are unlikely to be a primary factor leading to orthostatic intolerance.  相似文献   

18.
We tested the hypothesis that women have blunted sympathetic neural responses to orthostatic stress compared with men, which may be elicited under hypovolemic conditions. Muscle sympathetic nerve activity (MSNA) and hemodynamics were measured in eight healthy young women and seven men in supine position and during 6 min of 60 degrees head-up tilt (HUT) under normovolemic and hypovolemic conditions (randomly), with approximately 4-wk interval. Acute hypovolemia was produced by diuretic (furosemide) administration approximately 2 h before testing. Orthostatic tolerance was determined by progressive lower body negative pressure to presyncope. We found that furosemide produced an approximately 13% reduction in plasma volume, causing a similar increase in supine MSNA in men and women (mean +/- SD of 5 +/- 7 vs. 6 +/- 5 bursts/min; P = 0.895). MSNA increased during HUT and was greater in the hypovolemic than in the normovolemic condition (32 +/- 6 bursts/min in normovolemia vs. 44 +/- 15 bursts/min in hypovolemia in men, P = 0.055; 35 +/- 9 vs. 45 +/- 8 bursts/min in women, P < 0.001); these responses were not different between the genders (gender effect: P = 0.832 and 0.814 in normovolemia and hypovolemia, respectively). Total peripheral resistance increased proportionately with increases in MSNA during HUT; these responses were similar between the genders. However, systolic blood pressure was lower, whereas diastolic blood pressure was similar in women compared with men during HUT, which was associated with a smaller stroke volume or stroke index. Orthostatic tolerance was lower in women, especially under hypovolemic conditions. These results indicate that men and women have comparable sympathetic neural responses during orthostatic stress under normovolemic and hypovolemic conditions. The lower orthostatic tolerance in women is predominantly because of a smaller stroke volume, presumably due to less cardiac filling during orthostasis, especially under hypovolemic conditions, which may overwhelm the vasomotor reserve available for vasoconstriction or precipitate neurally mediated sympathetic withdrawal and syncope.  相似文献   

19.
The purpose of this project was to test the hypothesis that increases in muscle sympathetic nerve activity (MSNA) during an orthostatic challenge is attenuated in heat-stressed individuals. To accomplish this objective, MSNA was measured during graded lower body negative pressure (LBNP) in nine subjects under normothermic and heat-stressed conditions. Progressive LBNP was applied at -3, -6, -9, -12, -15, -18, -21, and -40 mmHg for 2 min per stage. Whole body heating caused significant increases in sublingual temperature, skin blood flow, sweat rate, heart rate, and MSNA (all P < 0.05) but not in mean arterial blood pressure (P > 0.05). Progressive LBNP induced significant increases in MSNA in both thermal conditions. However, during the heat stress trial, increases in MSNA at LBNP levels higher than -9 mmHg were greater compared with during the same LBNP levels in normothermia (all P < 0.05). These data suggest that the increase in MSNA to orthostatic stress is not attenuated but rather accentuated in heat-stressed humans.  相似文献   

20.
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号