首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study examined the possible influence of changes in heart rate (HR) on the gain of the transfer function relating renal sympathetic nerve activity (RSNA) to arterial pressure (AP) at HR frequency in rats. In seven urethane-anesthetized rats, AP and RSNA were recorded under baseline conditions (spontaneous HR = 338 +/- 6 beats/min, i.e., 5.6 +/- 0.1 Hz) and during 70-s periods of cardiac pacing at 6-9 Hz applied in random order. Cardiac pacing slightly increased mean AP (0.8 +/- 0.2 mmHg/Hz) and decreased pulse pressure (-3.6 +/- 0.3 mmHg/Hz) while leaving the mean level of RSNA essentially unaltered (P = 0.680, repeated-measures ANOVA). The gain of the transfer function from AP to RSNA measured at HR frequency was always associated with a strong, significant coherence and was stable between 6 and 9 Hz (P = 0.185). The transfer function gain measured under baseline conditions [2.44 +/- 0.28 normalized units (NU)/mmHg] did not differ from that measured during cardiac pacing (2.46 +/- 0.27 NU/mmHg). On the contrary, phase decreased linearly as a function of HR, which indicated the presence of a fixed time delay (97 +/- 6 ms) between AP and RSNA. In conclusion, the dynamic properties of arterial baroreflex pathways do not affect the gain of the transfer function between AP and RSNA measured at HR frequency in the upper part of the physiological range of HR variations in the rat.  相似文献   

2.
Gravity acts on the circulatory system to decrease arterial blood pressure (AP) by causing blood redistribution and reduced venous return. To evaluate roles of the baroreflex and vestibulosympathetic reflex (VSR) in maintaining AP during gravitational stress, we measured AP, heart rate (HR), and renal sympathetic nerve activity (RSNA) in four groups of conscious rats, which were either intact or had vestibular lesions (VL), sinoaortic denervation (SAD), or VL plus SAD (VL + SAD). The rats were exposed to 3 G in dorsoventral axis by centrifugation for 3 min. In rats in which neither reflex was functional (VL + SAD group), RSNA did not change, but the AP showed a significant decrease (-8 +/- 1 mmHg vs. baseline). In rats with a functional baroreflex, but no VSR (VL group), the AP did not change and there was a slight increase in RSNA (25 +/- 10% vs. baseline). In rats with a functional VSR, but no baroreflex (SAD group), marked increases in both AP and RSNA were observed (AP 31 +/- 6 mmHg and RSNA 87 +/- 10% vs. baseline), showing that the VSR causes an increase in AP in response to gravitational stress; these marked increases were significantly attenuated by the baroreflex in the intact group (AP 9 +/- 2 mmHg and RSNA 38 +/- 7% vs. baseline). In conclusion, AP is controlled by the combination of the baroreflex and VSR. The VSR elicits a huge pressor response during gravitational stress, preventing hypotension due to blood redistribution. In intact rats, this AP increase is compensated by the baroreflex, resulting in only a slight increase in AP.  相似文献   

3.
The present study examined whether the gain of the transfer function relating cardiac-related rhythm of renal sympathetic nerve activity (RSNA) to arterial pressure (AP) pulse might serve as a spontaneous index of sympathetic baroreflex sensitivity (BRS). AP and RSNA were simultaneously recorded in conscious rats, either baroreceptor-intact (control, n = 11) or with partial denervation of baroreflex afferents [aortic baroreceptor denervated (ABD; n = 10)] during 1-h periods of spontaneous activity. Transfer gain was calculated over 58 adjacent 61.4-s periods (segmented into 10.2-s periods). Coherence between AP and RSNA was statistically (P < 0.05) significant in 90 +/- 3% and 56 +/- 10% of cases in control and ABD rats, respectively. Transfer gain was higher (P = 0.0049) in control [2.39 +/- 0.13 normalized units (NU)/mmHg] than in ABD (1.48 +/- 0.22 NU/mmHg) rats. In the pooled study sample, transfer gain correlated with sympathetic BRS estimated by the vasoactive drug injection technique (R = 0.75; P < 0.0001) and was inversely related to both time- (standard deviation; R = -0.74; P = 0.0001) and frequency-domain [total spectral power (0.00028-2.5 Hz); R = -0.82; P < 0.0001] indices of AP variability. In control rats, transfer gain exhibited large fluctuations (coefficient of variation: 34 +/- 3%) that were not consistently related to changes in the mean level of AP, heart rate, or RSNA. In conclusion, the transfer function method provides a continuous, functionally relevant index of sympathetic BRS and reveals that the latter fluctuates widely over time.  相似文献   

4.
Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3-4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 +/- 2 mmHg) relative to both DHB Sham (108 +/- 3 mmHg) and Dura Cort rats (109 +/- 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 +/- 2 mmHg) compared with DHB Sham (105 +/- 2 mmHg) and Dura Cort animals (106 +/- 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 +/- 0.12 beats x min(-1) x mmHg(-1)) relative to DHB Sham and Dura Cort rats (3.51 +/- 0.28 and 3.37 +/- 0.27 beats x min(-1) x mmHg(-1), P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.  相似文献   

5.
The effects of acute emotional stress on the sympathetic component of the arterial baroreceptor reflex have not yet been described in conscious animals and humans. Arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 11 conscious rats before and during exposure to a mild environmental stressor (jet of air). Baroreflex function curves relating AP and RSNA were constructed by fitting a sigmoid function to RSNA and AP measured during sequential nitroprusside and phenylephrine administrations. Stress increased mean AP from 112 +/- 2 to 124 +/- 2 mmHg, heart rate from 381 +/- 10 to 438 +/- 18 beats/min, and RSNA from 0.80 +/- 0.14 to 1.49 +/- 0.23 microV. The RSNA-AP relationship was shifted toward higher AP values, and its maximum gain was significantly (P < 0.01) increased from 9.0 +/- 1.3 to 16.2 +/- 2.1 normalized units (NU)/mmHg. The latter effect was secondary to an increase (P < 0.01) in the range of the RSNA variation from 285 +/- 33 to 619 +/- 59 NU. In addition, the operating range of the reflex was increased (P < 0.01) from 34 +/- 2 to 41 +/- 3 mmHg. The present study indicates that in rats, the baroreflex control of RSNA is sensitized and operates over a larger range during emotional stress, which suggests that renal vascular tone, and possibly AP, are very efficiently controlled by the sympathetic nervous system under this condition.  相似文献   

6.
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.  相似文献   

7.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

8.
The role of ANG II in the arterial baroreflex control of renal sympathetic nerve activity (RSNA) in eight term-pregnant (P) and eight nonpregnant (NP) conscious rabbits was assessed using sequential intracerebroventricular and intravenous infusions of losartan, an AT1 receptor antagonist. The blood pressure (BP)-RSNA relationship was generated by sequential inflations of aortic and vena caval perivascular occluders. Pregnant rabbits exhibited a lower maximal RSNA reflex gain (-44%) that was primarily due to a reduction in the maximal sympathetic response to hypotension (P, 248 +/- 20% vs. NP, 357 +/- 41% of rest RSNA, P < 0.05). Intracerebroventricular losartan decreased resting BP in P (by 9 +/- 3 mmHg, P < 0.05) but not NP rabbits, and had no effect on the RSNA baroreflex in either group. Subsequent intravenous losartan decreased resting BP in NP and further decreased BP in P rabbits, but had no significant effect on the maximal RSNA reflex gain. ANG II may have an enhanced role in the tonic support of BP in pregnancy, but does not mediate the gestational depression in the arterial baroreflex control of RSNA in rabbits.  相似文献   

9.
Although acute myocardial ischemia or infarction may induce the Bezold-Jarisch (BJ) reflex through the activation of serotonin receptors on vagal afferent nerves, the mechanism by which the BJ reflex modulates the dynamic characteristics of arterial pressure (AP) regulation is unknown. The purpose of this study was to examine the effects of the BJ reflex induced by intravenous phenylbiguanide (PBG) on the dynamic characteristics of the arterial baroreflex. In seven anesthetized rabbits, we perturbed intracarotid sinus pressure (CSP) according to a white noise sequence while renal sympathetic nerve activity (RSNA), AP, and heart rate (HR) were recorded. We estimated the transfer function from CSP to RSNA (neural arc) and from RSNA to AP (peripheral arc) before and after 10 min of intravenous administration of PBG (100 microg. kg-1. min-1). The intravenous PBG decreased mean AP from 84.5 +/- 4.0 to 68.2 +/- 4.7 mmHg (P < 0.01), mean RSNA to 76.2 +/- 7.0% (P < 0.05), and mean HR from 301.6 +/- 7.7 to 288.4 +/- 9.0 beats/min (P < 0.01). The intravenous PBG significantly decreased neural arc dynamic gain at 0.01 Hz (1.06 +/- 0.08 vs. 0.59 +/- 0.17, P < 0.05), whereas it did not affect that of the peripheral arc (1.20 +/- 0.12 vs. 1.18 +/- 0.41). In six different rabbits without intravenous PBG, the neural arc transfer function did not change between two experimental runs with intervening interval of 10 min, excluding the possibility that the cumulative effects of anesthetics had altered the neural arc transfer function. In conclusion, excessive activation of the BJ reflex during acute myocardial ischemia may exert an adverse effect on AP regulation, not only by sympathetic suppression, but also by attenuating baroreflex dynamic gain.  相似文献   

10.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

11.
The present study examined the effects of baroreceptor loading and unloading on the various rhythms present in the renal sympathetic nerve activity (RSNA) of 10 conscious rats. Short-lasting (4-5 min), steady-state decreases (from -10 to -40 mmHg) and increases (from 5 to 30 mmHg) in arterial pressure (AP) were induced by the intravenous infusion of sodium nitroprusside and phenylephrine, respectively. The relationship between changes in AP level and RSNA total power (fast Fourier transform analysis; 0-25 Hz) was characterized by an inverse sigmoid function. Basal AP was located 6.3 mmHg above AP at the midrange of the curve, that is, near the lower plateau. Sigmoid relationships were also observed for spectral powers in the low (LF, 0.030-0.244 Hz), respiratory (0.79-2.5 Hz) and high-frequency (HF, 2.5-25 Hz) bands. In contrast, in the MF band (0.27-0.76 Hz) containing oscillations associated with Mayer waves, the AP-RSNA power relationship showed a bell curve shape with a maximum at 21 mmHg below basal AP. Similarly, changes in RSNA power at the frequency of the heart beat were well characterized by a bell curve reaching a maximum at 22 mmHg below basal AP. Under baseline conditions, LF, MF, respiratory and HF powers contributed approximately 3, 10, 18, and 69% of the total RSNA power, respectively. The pulse-synchronous oscillation of RSNA accounted for only 11 +/- 1% of HF power. The contribution of HF power to total power did not change consistently with AP changes. Therefore, most of the baroreflex-induced changes in RSNA are mediated by changes in the amplitude of fast, irregular fluctuations.  相似文献   

12.
Spinal cord injury causes debilitating cardiovascular disturbances. The etiology of these disturbances remains obscure, partly because the locations of spinal cord pathways important for sympathetic control of cardiovascular function have not been thoroughly studied. To elucidate these pathways, we examined regions of the thoracic spinal cord important for reflex sympathetic control of arterial pressure (AP). In anesthetized rats, baroreceptor relationships between pharmacologically induced changes in AP and changes in left renal sympathetic nerve activity (RSNA) were generated in spinally intact rats and after acute surgical hemisection of either the dorsal, left, or right T8 spinal cord. None of these individual spinal lesions prevented the baroreceptor-mediated increases in RSNA caused by decreases in AP. Thus, baroreceptor-mediated increases in RSNA in rats are mediated by relatively diffuse, bilateral, descending, excitatory projections. The ability to reduce RSNA at increased AP was impaired after both dorsal and left hemisections, and baroreceptor gain was significantly decreased. Baroreceptor-induced maximum decreases in RSNA were not affected by right hemisections. However, baroreflex gain was impaired. Because both dorsal and left hemisections, but not right hemisections, attenuated the decrease in RSNA at elevated AP, we conclude that pathways involved in the tonic inhibition of spinal sources of sympathetic activity descend ipsilaterally in the dorsal spinal cord. Our results show that many lesions that do not fully transect the spinal cord spare portions of both descending excitatory pathways that may prevent orthostatic hypotension and descending inhibitory pathways that reduce the incidence of autonomic dysreflexia.  相似文献   

13.
赵工  何瑞荣 《生理学报》1990,42(5):453-459
本实验观察了心房肽Ⅱ(Atriopeptin Ⅱ,APⅡ)对麻醉大鼠血压(AP)、心率(HR)和肾交感神经传出放电(RSNA)的影响,并与硝普钠对 AP 和 RSNA 的影响作比较。结果如下:(1)缓冲神经完整和迷走神经完整条件下(n=12)静脉注射 APⅡ(50μg/kg)后,动脉收缩压(SAP)降低23.0±1.66 mmHg(Μ±SE,p<0.001),HR 减慢9±3.5b/min(p<0.05),RSNA 降低4.89±2.95%(P>0.05)。迷走神经切断后,静脉注射 APⅡ引起的~⊿SAP 虽有所减小,但与切断迷走神经前的反应比较,无统计学意义,HR 减慢不再出现,而 RSNA 则有所增加;(2)缓冲神经切断和迷走神经完整条件下(n=7),静脉注射 APⅡ时 SAP 降低27.4±3.25mmHg(P<0.001),HR 减慢13±3.1b/min(P<0.01),RSNA 降低11.67±1.95%(P<0.001)。切断迷走神经后,静脉注射 APⅡ引起的 SAP 降低程度有明显減小(P<0.01),HR减慢不再出现,RSNA 则反而增加(3)无论在迷走神经完整还是切断条件下,静脉注射硝普钠(n=6) SAP 均明显降低,同时伴有 RSNA 的反射性增加。以上结果表明:APⅡ的降压效应,部分是通过迷走神经传入纤维;在切断缓冲神经条件下,APⅡ可经由迷走神经传入纤维的激活而反射地抑制 RSNA。  相似文献   

14.
Adult obese Zucker rats (OZRs) have elevated sympathetic vasomotor tone and arterial pressure (AP) with blunted baroreflex-mediated changes in heart rate (HR) compared with adult lean Zucker rats (LZRs). The present study examined whether compromised cardiac baroreflexes are indicative of attenuated sympathetic responses. In addition, because juvenile OZRs have a normal mean AP, we determined whether baroreflexes are fully functional prior to hypertension. At 13 wk, adult OZRs had an elevated baseline mean AP compared with LZRs (137 +/- 3 vs. 123 +/- 5 mmHg, P < 0.05) under urethane anesthesia. Phenylephrine-induced increases in AP evoked smaller inhibitions of splanchnic sympathetic nerve activity (SNA) and HR in OZRs compared with LZRs. In addition, sympathoexcitatory responses to nitroprusside-induced hypotension were also blunted in OZRs. Sigmoid analysis revealed a decreased gain, a higher mean AP at the midpoint of the curve (AP(50)), and a reduced range of changes in SNA in OZRs. In contrast, at 7 wk of age, although juvenile OZRs weighed more than LZRs (313 +/- 13 vs. 204 +/- 4 g, P < 0.05), mean AP was comparable in both groups (122 +/- 5 vs. 121 +/- 4 mmHg, not significant). In these rats, rapid changes in AP evoked comparable changes in SNA and HR in OZRs and LZRs. Sigmoid analysis revealed that, although the gain of the reflex was blunted in OZRs (P < 0.05), the mean AP(50) and range of changes in SNA were comparable in OZRs and LZRs. Together, these data indicate that in adult OZRs, sympathetic responses to acute changes in AP are smaller than those observed in adult LZRs and that impairment of baroreceptor reflexes in OZR is not limited to the regulation of HR but extends to sympathetic vasomotor control. In addition, most of these deficits in baroreflex control of SNA develop in adulthood long after the onset of obesity and when other deficits in cardiovascular regulation are present.  相似文献   

15.
Endothelin 1 (ET-1) is increased in heart failure, both in plasma and within the central nervous system. Centrally, ET-1 induces sympathetic hyperactivity and arginine vasopressin (AVP) secretion. Both sympathetic activity and AVP secretion are regulated by the arterial baroreflex, which is typically impaired in heart failure. We hypothesized that central blockade of ETA receptors (ETAR) alters the baroreflex response of heart rate, renal sympathetic nerve activity (RSNA), and plasma AVP levels in a cardiomyopathic model of heart failure. Female Sprague-Dawley rats received weekly intraperitoneal injections of doxorubicin 2.5 mg x kg(-1) (doxorubicin heart failure, doxo-HF) or saline vehicle (control). After 8 weeks, they were instrumented, conditioned to the study environment, and then studied in the awake, non-restrained state. Baseline mean arterial pressure (MAP), RSNA, and plasma osmolality were similar in both groups, but heart rate (p<0.02), left ventricular pressure (p<0.001), and plasma AVP (p<0.01) were higher in the doxo-HF group. ET-1 dose dependently increased MAP, but the rise was significantly attenuated in doxo-HF rats at all doses. Baseline baroreflex control of heart rate and RSNA was similar in both groups. ETAR blockade with 4 nmol BQ123 i.c.v. significantly decreased both the upper plateau (p<0.05) and the range (p<0.05) of the baroreflex response of both heart rate and RSNA in doxo-HF but not in control rats. Despite higher basal plasma levels of AVP, ET-1 evoked a rise in plasma AVP of 13.6+/-3.2 pg x mL(-1) in doxo-HF compared with 0.4+/-0.4 pg x mL(-1) in control rats (p<0.001). To account for the blunted pressor response to ET-1 in the doxo-HF rats, gain of AVP release was calculated as DeltaAVP/DeltaMAP and was also found to be significantly greater in the doxo-HF rats (p<0.001). BQ123 prevented the rise in AVP and restored the gain in doxo-HF rats to that seen in controls. Thus, central ETAR contribute to the sympathoexcitation and AVP responses observed in heart failure due to doxorubicin cardiomyopathy.  相似文献   

16.
Exposure to a period of microgravity or bed rest produces several physiological adaptations. These changes, which include an increased incidence of orthostatic intolerance, have an impact when people return to a 1G environment or resume an upright posture. Compared with males, females appear more susceptible to orthostatic intolerance after exposure to real or simulated microgravity. Decreased arterial baroreflex compensation may contribute to orthostatic intolerance. We hypothesized that female rats would exhibit a greater reduction in arterial baroreflex function after hindlimb unloading (HU) compared with male rats. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious animals after 13-15 days of HU. Baseline HR was elevated in female rats, and HU increased HR in both genders. Consistent with previous results in males, baroreflex-mediated activation of RSNA was blunted by HU in both genders. Maximum RSNA in response to decreases in MAP was reduced by HU (male control 513 +/- 42%, n = 11; male HU 346 +/- 38%, n = 13; female control 359 +/- 44%, n = 10; female HU 260 +/- 43%, n = 10). Maximum baroreflex increase in RSNA was lower in females compared with males in both control and HU rats. Both female gender and HU attenuated baroreflex-mediated increases in sympathetic activity. The combined effects of HU and gender resulted in reduced baroreflex sympathetic reserve in females compared with males and could contribute to the greater incidence of orthostatic intolerance in females after exposure to spaceflight or bed rest.  相似文献   

17.
Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex control of regional sympathetic outputs.  相似文献   

18.
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.  相似文献   

19.
Previous studies with anesthetized animals have shown that the pressor region of the rostral ventrolateral medulla (RVLM) is a critical site in vasomotor control. The aim of this study was to develop, in conscious rabbits, a technique for microinjecting into the RVLM and to determine the influence of this area on renal sympathetic nerve activity (RSNA) and arterial pressure (AP) using local injections of glutamate, rilmenidine, ANG II and sarile. Rabbits were implanted with guide cannulas for bilateral microinjections into the RVLM (n = 7) or into the intermediate ventrolateral medulla (IVLM, n = 6) and an electrode for measuring RSNA. After 7 days of recovery, injections of glutamate (10 and 20 nmol) into the RVLM increased RSNA by 81 and 88% and AP by 17 and 25 mmHg, respectively. Infusion of glutamate (2 nmol/min) into the RVLM increased AP by 15 mmHg and the RSNA baroreflex range by 38%. By contrast, injection of the imidazoline receptor agonist rilmenidine (4 nmol) into the RVLM decreased AP by 8 mmHg and the RSNA baroreflex range by 37%. Injections of rilmenidine into the IVLM did not alter AP or RSNA. Surprisingly, treatments with ANG II (4 pmol/min) or the ANG II receptor antagonist sarile (500 pmol) into the RVLM did not affect the resting or baroreflex parameters. Infusion of ANG II (4 pmol/min) into the fourth ventricle increased AP and facilitated the RSNA baroreflex. Our results show that agents administered via a novel microinjecting system for conscious rabbits can selectively modulate neuronal activity in circumscribed regions of the ventrolateral medulla. We conclude that the RVLM plays a key role in circulatory control in conscious rabbits. However, we find no evidence for the role of ANG II receptors in the RVLM in the moment-to-moment regulation of AP and RSNA.  相似文献   

20.
Short-term intravenous infusion of angiotensin II (ANG II) into conscious rabbits reduces the range of renal sympathetic nerve activity (RSNA) by attenuating reflex disinhibition of RSNA. This action of ANG II to attenuate the arterial baroreflex range is exaggerated when ANG II is directed into the vertebral circulation, which suggests a mechanism involving the central nervous system. Because an intact area postrema (AP) is required for ANG II to attenuate arterial baroreflex-mediated bradycardia and is also required for maintenance of ANG II-dependent hypertension, we hypothesized that attenuation of maximum RSNA during infusion of ANG II involves the AP. In conscious AP-lesioned (APX) and AP-intact rabbits, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng x kg(-1) x min(-1)) on the relationship between mean arterial blood pressure (MAP) and RSNA. Intravenous infusion of ANG II into AP-intact rabbits resulted in a dose-related attenuation of maximum RSNA observed at low MAP. In contrast, ANG II had no effect on maximum RSNA in APX rabbits. To further localize the central site of ANG II action, its effect on the arterial baroreflex was assessed after a midcollicular decerebration. Decerebration did not alter arterial baroreflex control of RSNA compared with the control state, but as in APX, ANG II did not attenuate the maximum RSNA observed at low MAP. The results of this study indicate that central actions of peripheral ANG II to attenuate reflex disinhibition of RSNA not only involve the AP, but may also involve a neural interaction rostral to the level of decerebration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号