首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasodilation to increases in flow was studied in isolated gracilis muscle arterioles of female endothelial nitric oxide synthase (eNOS)-knockout (KO) and female wild-type (WT) mice. Dilation to flow (0-10 microl/min) was similar in the two groups, yet calculated wall shear stress was significantly greater in arterioles of eNOS-KO than in arterioles of WT mice. Indomethacin, which inhibited flow-induced dilation in vessels of WT mice by approximately 40%, did not affect the responses of eNOS-KO mice, whereas miconazole and 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) abolished the responses. Basal release of epoxyeicosatrienonic acids from arterioles was inhibited by PPOH. Iberiotoxin eliminated flow-induced dilation in arterioles of eNOS-KO mice but had no effect on arterioles of WT mice. In WT mice, neither N(omega)-nitro-L-arginine methyl ester nor miconazole alone affected flow-induced dilation. Combination of both inhibitors inhibited the responses by approximately 50%. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) alone inhibited flow-induced dilation by approximately 49%. ODQ + indomethacin eliminated the responses. Thus, in arterioles of female WT mice, nitric oxide and prostaglandins mediate flow-induced dilation. When eNOS is inhibited, endothelium-derived hyperpolarizing factor substitutes for nitric oxide. In female eNOS-KO mice, metabolites of cytochrome P-450, via activation of large-conductance Ca2+-activated K+ channels of smooth muscle, mediate entirely the arteriolar dilation to flow.  相似文献   

2.
The in vitro responses to ACh, flow, and hypoxia were studied in arterioles isolated from the diaphragms of rats. The endothelium was removed in some vessels by low-pressure air perfusion. In endothelium-intact arterioles, pressurized to 70 mmHg in the absence of luminal flow, ACh (10(-5) M) elicited dilation (from 103 +/- 10 to 156 +/- 13 microm). The response to ACh was eliminated by endothelial ablation and by the nitric oxide synthase antagonists NG-nitro-L-arginine (L-NNA; 10(-5) M) and NG-nitro-L-arginine methyl ester (L-NAME, 10(-5) M) but not by indomethacin (10(-5) M). Increases in luminal flow (5-35 microl/min in 5 microl/min steps) at constant distending pressure (70 mmHg) elicited dilation (from 98 +/- 8 to 159 +/- 12 microm) in endothelium-intact arterioles. The response to flow was partially inhibited by L-NNA, L-NAME, and indomethacin and eliminated by endothelial ablation and by concurrent treatment with L-NAME and indomethacin. The response to hypoxia was determined by reducing the periarteriolar PO2 from 100 to 25-30 Torr by changing the composition of the gas used to bubble the superfusing solution. Hypoxia elicited dilation (from 110 +/- 9 to 165 +/- 12 microm) in endothelium-intact arterioles but not in arterioles from which the endothelium had been removed. Hypoxic vasodilation was eliminated by treatment with indomethacin and was not affected by L-NAME or L-NNA. In rat diaphragmatic arterioles, the response to ACh is dependent on endothelial nitric oxide release, whereas the response to hypoxia is mediated by endothelium-derived prostaglandins. Flow-dilation requires that both nitric oxide and cyclooxygenase pathways be intact.  相似文献   

3.
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.  相似文献   

4.
Impairment of flow-induced vasodilation in coronary resistance arterioles may contribute to the decline in coronary vasodilatory reserve that occurs with advancing age. This study investigated the effects of age on flow-induced signaling and activation of nitric oxide (NO)-mediated vasodilation in coronary resistance arterioles. Coronary arterioles were isolated from young (approximately 6 mo) and old (approximately 24 mo) male Fischer-344 rats to assess vasodilation to flow, vascular endothelial growth factor (VEGF), and ACh. Flow- and VEGF-induced vasodilation of coronary arterioles was impaired with age (P相似文献   

5.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

6.
Flow-induced vasodilation is attenuated with old age in rat skeletal muscle arterioles. The purpose of this study was to determine whether diminished cyclooxygenase (COX) signaling contributes to the age-induced attenuation of flow-induced vasodilation in gastrocnemius muscle arterioles and to determine whether, and through which mechanism(s), exercise training restores this deficit in old rats. Fischer 344 rats (3 and 22 mo old) were assigned to a sedentary or exercise-trained group. First-order arterioles were isolated from the gastrocnemius muscles, cannulated, and pressurized to 70 cm H(2)O. Diameter changes were determined in response to graded increases in intraluminal flow in the presence and absence of nitric oxide synthase (NOS) inhibition [10(-5) M N(G)-nitro-L-arginine methyl ester (L-NAME)], COX inhibition (10(-5) M indomethacin), or combination NOS (10(-5) M L-NAME) plus COX (10(-5) M indomethacin) inhibition. Aging reduced flow-induced vasodilation in gastrocnemius muscle arterioles. Exercise training restored responsiveness to flow in arterioles of aged rats and enhanced flow-induced vasodilation in arterioles from young rats. L-NAME inhibition of flow-induced vasodilation was greater in arterioles from old rats compared with those from young rats and was increased after exercise training in arterioles from both young and old rats. Although the indomethacin-sensitive portion of flow-induced dilation was not altered by age or training, both COX-1 mRNA expression and PGI(2) production increased with training in arterioles from old rats. These data demonstrate that exercise training restores flow-induced vasodilation in gastrocnemius muscle arterioles from old rats and enhances flow-induced vasodilation in gastrocnemius muscle arterioles from young rats. In arterioles from both old and young rats, the exercise training-induced enhancement of flow-induced dilation occurs primarily through a NOS mechanism.  相似文献   

7.
Flow-induced dilation of gracilis muscle arterioles was examined in both genders of control rats and rats chronically treated with N(omega)-nitro-L-arginine methyl ester (L-NAME). After L-NAME treatment (4 wk), systolic blood pressure was significantly increased compared with control, whereas the plasma concentration of nitrate/nitrite was significantly reduced. Isolated and pressurized arterioles dilated significantly in response to increases in flow (0-25 microl/min). Flow-induced dilation was comparable in arterioles of control and L-NAME-treated rats but was significantly greater in female than in male rats. L-NAME + indomethacin, which abolished flow-induced dilation in arterioles of male control rats, inhibited the dilation by only ~75% in female control rats. The residual portion of the response was eliminated by additional administration of miconazole, an inhibitor of cytochrome P-450. Indomethacin did not affect the dilation in female L-NAME-treated rats but completely inhibited the response in male L-NAME-treated rats. The indomethacin-insensitive, flow-induced dilation in female L-NAME-treated arterioles was abolished by miconazole, 6-(2-proparglyoxyphenyl)hexanoic acid, or charybdotoxin. Thus an augmented release of endothelial prostaglandins accounts for the preserved flow-induced dilation in arterioles of male rats, whereas a metabolite of cytochrome P-450 is responsible for the maintenance of flow-induced dilation in female rats, suggesting important differences in the adaptation of the endothelium of arterioles from male and female rats to the lack of nitric oxide (NO) synthesis.  相似文献   

8.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.  相似文献   

9.
Our previous studies demonstrated that, in gracilis muscle arterioles of male mice deficient in the gene for endothelial nitric oxide synthase (eNOS), flow-induced dilation (FID) is mediated by endothelial PGs. Thus the present study aimed to identify the specific isoform of cyclooxygenase (COX) responsible for the compensatory mediation of FID in arterioles of eNOS-knockout (KO) mice. Experiments were conducted on gracilis muscle arterioles of male eNOS-KO and wild-type (WT) mice. Basal tone and magnitude of FID of arterioles were comparable in the two strains of mice. A role for COX isoforms in the mediation of the responses was assessed by use of valeryl salicylate (3 mM) and NS-398 (10 microM), inhibitors of COX-1 and COX-2, respectively. In eNOS-KO arterioles, valeryl salicylate or NS-398 alone inhibited FID (at maximal flow rate) by approximately 51% and approximately 58%, respectively. Administration of both inhibitors eliminated the dilation. In WT arterioles, inhibition of COX-2 did not significantly affect FID, whereas inhibition of COX-1 decreased the dilation by approximately 57%. The residual portion of the response was abolished by additional administration of Nomega-nitro-L-arginine methyl ester. Western blot analysis indicated a comparable content of COX-1 protein in arterioles of WT and eNOS-KO mice. COX-2 protein, which was not detectable in arterioles of WT mice, was strongly expressed in arterioles of eNOS-KO mice, together with an upregulation of COX-2 gene expression. Immunohistochemical staining confirmed the presence of COX-2 in the endothelium of eNOS-KO arterioles. In conclusion, COX-2-derived PGs are the mediators responsible for maintenance of FID in arterioles of eNOS-deficient mice.  相似文献   

10.
Our previous studies have suggested that there is reduced nitric oxide (NO) production in canine coronary blood vessels after the development of pacing-induced heart failure. The goal of these studies was to determine whether flow-induced NO-mediated dilation is altered in coronary arterioles during the development of heart failure. Subepicardial coronary arterioles (basal diameter 80 microm) were isolated from normal canine hearts, from hearts with dysfunction but no heart failure, and from hearts with severe cardiac decompensation. Arterioles were perfused at increasing flow or administered agonists with no flow in vitro. In arterioles from normal hearts, flow increased arteriolar diameter, with one-half of the response being NO dependent and one-half prostaglandin dependent. Shear stress-induced dilation was eliminated by removing the endothelium. Arterioles from normal hearts and hearts with dysfunction but no failure responded to increasing shear stress with dilation that reached a maximum at a shear stress of 20 dyn/cm(2). In contrast, arterioles from failing hearts showed a reduced dilation, reaching only 55% of the dilation seen in vessels of normal hearts at a shear stress of 100 dyn/cm(2). This remaining dilation was eliminated by indomethacin, suggesting that the NO-dependent component was absent in coronary microvessels after the development of heart failure. Similarly, agonist-induced NO-dependent coronary arteriolar dilation was markedly attenuated after the development of heart failure. After the development of severe dilated cardiomyopathy and heart failure, the NO-dependent component of both shear stress- and agonist-induced arteriolar dilation is reduced or entirely absent.  相似文献   

11.
The excitatory neurotransmitter glutamate causes dilation of newborn pig cerebral arterioles in vivo that is blocked by inhibition of carbon monoxide (CO) production. CO, a potent dilator in cerebral circulation in vivo, is produced endogenously in cerebral microvessels via heme oxygenase (HO). In isolated pressurized cerebral arterioles (approximately 200 microm) from newborn pigs, we investigated the involvement of CO and the endothelium in response to glutamate. A CO-releasing molecule, dimanganese decacarbonyl (10(-8)-10(-6) M), dilated cerebral arterioles. Glutamate (10(-6)-10(-4) M) and 1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD; 10(-6)-10(-5) M), a N-methyl-D-aspartate (NMDA) receptor agonist, caused cerebral vascular dilation. Dilation of cerebral arterioles to glutamate and cis-ACPD was abolished by chromium mesoporphyrin (CrMP; 10(-6) M), a HO inhibitor. In contrast, CrMP did not alter dilation to isoproterenol, a -adrenergic receptor agonist. Endothelium-denuded cerebral arterioles did not dilate to glutamate or bradykinin (endothelium-dependent dilator), whereas responses to isoproterenol were preserved. These data indicate that cerebral arterioles from newborn pigs may directly respond to glutamate and the NMDA receptor agonists by endothelium-dependent dilation that involves stimulation of CO production via the HO pathway in the endothelium.  相似文献   

12.
Previously, we frequently observed dilation of arterioles after agonist-induced constrictions. We hypothesized that deformation of the endothelium during decreases in diameter of isolated arterioles elicits the release of nitric oxide (NO). In isolated arterioles of rat mesentery, phenylephrine (PE, 10(-7) M)-, U-46619 (10(-7) M)-, and KCl (50 mM)-induced constrictions were followed by potent dilations. Inhibition of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 2 x 10(-4) M) or removal of the endothelium significantly enhanced constriction and reduced the postconstriction dilation. In the presence of 80 mmHg of intraluminal pressure, an increase in extraluminal pressure (P(e)) to 75 mmHg for 20 s and 1 and 2 min decreased vessel diameter. After release of P(e), arterioles dilated as a function of the duration of diameter reduction by P(e). Removal of the endothelium or administration of L-NNA significantly diminished the post-P(e) dilations. In cultured mesenteric arteriolar endothelial cells (EC), PE, U-46619, or KCl did not increase, whereas ACh did increase, the production of NO, as measured by a fluorometric assay for nitrite. Furthermore, when EC, cultured on a stretched silicone membrane, were subjected to deformation by shortening the membrane to 50% of its original length, NO release increased significantly. Based on all of the above, we propose that deformation of EC per se elicits release of NO, a mechanism that modulates arteriolar constriction.  相似文献   

13.
We hypothesized that hydrogen peroxide (H2O2) has a role in the local regulation of skeletal muscle blood flow, thus significantly affecting the myogenic tone of arterioles. In our study, we investigated the effects of exogenous H2O2 on the diameter of isolated, pressurized (at 80 mmHg) rat gracilis skeletal muscle arterioles (diameter of approximately 150 microm). Lower concentrations of H2O2 (10(-6)-3 x 10(-5) M) elicited constrictions, whereas higher concentrations of H2O2 (6 x 10(-5)-3 x 10(-4) M), after initial constrictions, caused dilations of arterioles (at 10(-4) M H2O2, -19 +/- 1% constriction and 66 +/- 4% dilation). Endothelium removal reduced both constrictions (to -10 +/- 1%) and dilations (to 33 +/- 3%) due to H2O2. Constrictions due to H2O2 were completely abolished by indomethacin and the prostaglandin H2/thromboxane A2 (PGH2/TxA2) receptor antagonist SQ-29548. Dilations due to H2O2 were significantly reduced by inhibition of nitric oxide synthase (to 38 +/- 7%) but were unaffected by clotrimazole or sulfaphenazole (inhibitors of cytochrome P-450 enzymes), indomethacin, or SQ-29548. In endothelium-denuded arterioles, clotrimazole had no effect, whereas H2O2-induced dilations were significantly reduced by charybdotoxin plus apamin, inhibitors of Ca(2+)-activated K+ channels (to 24 +/- 3%), the selective blocker of ATP-sensitive K+ channels glybenclamide (to 14 +/- 2%), and the nonselective K(+)-channel inhibitor tetrabutylammonium (to -1 +/- 1%). Thus exogenous administration of H2O2 elicits 1) release of PGH2/TxA2 from both endothelium and smooth muscle, 2) release of nitric oxide from the endothelium, and 3) activation of K+ channels, such as Ca(2+)-activated and ATP-sensitive K+ channels in the smooth muscle resulting in biphasic changes of arteriolar diameter. Because H2O2 at low micromolar concentrations activates several intrinsic mechanisms, we suggest that H2O2 contributes to the local regulation of skeletal muscle blood flow in various physiological and pathophysiological conditions.  相似文献   

14.
The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through cannulated arterioles at constant luminal pressure via a pressure gradient between the pipettes. Subepicardial porcine coronary arterioles with diameter at full dilation and 60 mmHg (D0) of 168 +/- 10 (SE) microm were cannulated. Vessels treated with Nomega-nitro-L-arginine (L-NNA) to block NO production and untreated vessels were pressurized at 60 mmHg for 3 days with and without flow. Endothelium-dependent dilation to 10(-7) M bradykinin was preserved in all groups. Tone was significantly less in vessels cultured under flow conditions in the last half of the culture period. Untreated and L-NNA-treated vessels regulated their diameter to yield shear stresses of 10.3 +/- 2.1 and 14.0 +/- 2.4 (SE) dyn/cm2, respectively (not significantly different). Without L-NNA, passive pressure-diameter curves at the end of the culture period revealed inward remodeling in the control group [to 92.3 +/- 1.3% of D0 (SE)] and no remodeling in the vessels cultured under flow conditions (100.2 +/- 1.3% of D0); with L-NNA, the group subjected to flow showed inward remodeling (92.1 +/- 2.5% of D0). We conclude that pressurized coronary resistance arteries could be maintained in culture for several days with flow. Vessels cultured under flow conditions remained more dilated when NO synthesis was blocked. Inward remodeling occurred in vessels cultured under no-flow conditions and was inhibited by flow-dependent NO synthesis.  相似文献   

15.
Using modified oxygen needle microelectrodes, vital microscopy with video-recording facilities, measurements of tissue oxygen tension (PO2) profiles near the cortical arterioles and transmural PO2 gradients on pial arterioles of the rat were performed. At control transmural PO2 gradient averaged 1.17 +/- 0.06 mm Hg/microm (mean +/- SEM, n = 40). Local dilatation of the arteriolar wall (microapplication of sodium nitroprusside approximately 2 x 10(-7) M) resulted in marked drop of the transmural PO2 gradient to 0.68 +/- 0.04 mm Hg/microm (p < 0.001, n = 38). The important finding of the study is the dependence of the transmural PO2 gradient on the vascular tone of pial arterioles. The data presented allow to conclude that O2 consumption of the arteriolar wall lies within the range for surrounding tissue and O2 consumption of the endothelial layer and, apparently, has no substantial impact on transmural PO2 gradient.  相似文献   

16.
Reactive oxygen species (ROS) have been proposed to mediate vasodilation in the microcirculation. We investigated the role of ROS in arachidonic acid (AA)-induced coronary microvascular dilation. Porcine epicardial coronary arterioles (110 +/- 4 microm diameter) were mounted onto pipettes in oxygenated Krebs buffer. Vessels were incubated with vehicle or 1 mM Tiron (a nonselective ROS scavenger), 250 U/ml polyethylene-glycolated (PEG)-superoxide dismutase (SOD; an O2- scavenger), 250 U/ml PEG-catalase (a H2O2 scavenger), or the cyclooxygenase (COX) inhibitors indomethacin (10 microM) or diclofenac (10 microM) for 30 min. After endothelin constriction (30-60% of resting diameter), cumulative concentrations of AA (10(-10)-10(-5)M) were added and internal diameters measured by video microscopy. AA (10-7 M) produced 37 +/- 6% dilation, which was eliminated by the administration of indomethacin (4 +/- 7%, P < 0.05) or diclofenac (-8 +/- 8%, P < 0.05), as well as by Tiron (-4 +/- 5%, P < 0.05), PEG-SOD (-10 +/- 6%, P < 0.05), or PEG-catalase (1 +/- 4%, P < 0.05). Incubation of small coronary arteries with [3H]AA resulted in the formation of prostaglandins, which was blocked by indomethacin. In separate studies in microvessels, AA induced concentration-dependent increases in fluorescence of the oxidant-sensitive probe dichlorodihydrofluorescein diacetate, which was inhibited by pretreatment with indomethacin or by SOD + catalase. We conclude that in porcine coronary microvessels, COX-derived ROS contribute to AA-induced vasodilation.  相似文献   

17.
The hypothesis was tested that pressure and pressure pulsation modulate vascular remodeling. Arterioles ( approximately 200 microm lumen diameter) were dissected from rat cremaster muscle and studied in organoid culture. In the first series, arterioles were kept at a stable pressure level of either 50 or 100 mmHg for 3 days. Both groups showed a progressive increase in myogenic tone during the experiment. Arterioles kept at 50 mmHg showed larger endothelium-dependent dilation, compared with vessels kept at 100 mmHg on day 3. Remodeling, as indicated by the reduction in maximally dilated diameter at 100 mmHg, was larger in arterioles kept at 50 mmHg compared with 100 mmHg: 34 +/- 4.5 versus 10 +/- 4.8 microm (P < 0.05). In the second series, arterioles were subjected to a stable pressure of 60 mmHg or oscillating pressure of 60 +/- 10 mmHg (1.5 Hz) for 4 days. Pressure pulsation induced partial dilation and was associated with less remodeling: 34 +/- 4.0 versus 19 +/- 4.5 microm (P < 0.01) for stable pressure versus oscillating pressure. Vasomotion was frequently observed in all groups, and inward remodeling was larger in vessels with vasomotion: 30 +/- 2.5 microm compared with vessels that did not exhibit vasomotion: 8.0 +/- 5.0 microm (P < 0.01). In conclusion, these results indicate that remodeling is not enhanced by high pressure. Pressure pulsation causes partial dilation and reduces inward remodeling. The appearance of vasomotion is associated with enhanced inward remodeling.  相似文献   

18.
Investigators report that local heat causes an increase in skin blood flow consisting of two phases. The first is solely sensory neural, and the second is nitric oxide mediated. We hypothesize that mechanisms behind these two phases are causally linked by shear stress. Because microvascular blood flow, endothelial shear stress, and vessel diameters cannot be measured in humans, bat wing arterioles (26.6 +/- 0.3, 42.0 +/- 0.4, and 58.7 +/- 2.2 microm) were visualized noninvasively on a transparent heat plate via intravital microscopy. Increasing plate temperature from 25 to 37 degrees C increased flow in all three arterial sizes (137.1 +/- 0.3, 251.9 +/- 0.5, and 184.3 +/- 0.6%) in a biphasic manner. With heat, diameter increased in large arterioles (n = 6) by 8.7 +/- 0.03% within 6 min, medium arterioles (n = 8) by 19.7 +/- 0.5% within 4 min, and small arterioles (n = 8) by 31.6 +/- 2.2% in the first minute. Lidocaine (0.2 ml, 2% wt/vol) and NG-nitro-L-arginine methyl ester (0.2 ml, 1% wt/vol) were applied topically to arterioles (approximately 40 microm) to block sensory nerves, modulate shear stress, and block nitric oxide generation. Local heat caused only a 10.4 +/- 5.5% increase in diameter with neural blockade (n = 8) and only a 7.5 +/- 4.1% increase in diameter when flow was reduced (n = 8), both significantly lower than control (P < 0.001). Diameter and flow increases were significantly reduced with NG-nitro-L-arginine methyl ester application (P < 0.05). Our novel thermoregulatory animal model illustrates 1) regulation of shear stress, 2) a nonneural component of the first phase, and 3) a shear-mediated second phase. The time course of dilation suggests that early dilation of small arterioles increases flow and enhances second-phase dilation of the large arterioles.  相似文献   

19.
Venular control of arteriolar perfusion has been the focus of several investigations in recent years. This study investigated 1) whether endogenous adenosine helps control venule-dependent arteriolar dilation and 2) whether venular leukocyte adherence limits this response via an oxidant-dependent mechanism in which nitric oxide (NO) levels are decreased. Intravital microscopy was used to assess changes in arteriolar diameters and NO levels in rat mesentery. The average resting diameter of arterioles (27.5 +/- 1.0 microm) paired with venules with minimal leukocyte adherence (2.1 +/- 0.3 per 100-microm length) was significantly larger than that of unpaired arterioles (24.5 +/- 0.8 microm) and arterioles (23.3 +/- 1.3 microm) paired with venules with higher leukocyte adherence (9.0 +/- 0.5 per 100-microm length). Local superfusion of adenosine deaminase (ADA) induced significant decreases in diameter and perivascular NO concentration in arterioles closely paired to venules with minimal leukocyte adherence. However, ADA had little effect on arterioles closely paired to venules with high leukocyte adherence or on unpaired arterioles. To determine whether the attenuated response to ADA for the high-adherence group was oxidant dependent, the responses were also observed in arterioles treated with 10(-4) M Tempol. In the high-adherence group, Tempol fully restored NO levels to those of the low-adherence group; however, the ADA-induced constriction remained attenuated, suggesting a possible role for an oxidant-independent vasoconstrictor released from the inflamed venules. These findings suggest that adenosine- and venule-dependent dilation of paired arterioles may be mediated, in part, by NO and inhibited by venular leukocyte adherence.  相似文献   

20.
A popular diet used for weight reduction is the low-carbohydrate diet, which has most calories derived from fat and protein, but effects of this dietary regimen on coronary vascular function have not been identified. We tested the hypothesis that obesity-induced impairment in coronary endothelial function is reversed by a low-carbohydrate diet. We used four groups of male Zucker rats: lean and obese on normal and low-carbohydrate diets. Rats were fed ad libitum for 3 wk; total caloric intake and weight gain were similar in both diets. To assess endothelial and vascular function, coronary arterioles were cannulated and pressurized for diameter measurements during administration of acetylcholine or sodium nitroprusside or during flow. When compared with lean rats, endothelium-dependent acetylcholine-induced vasodilation was impaired by approximately 50% in obese rats (normal diet), but it was restored to normal by the low-carbohydrate diet. When the normal diet was fed, flow-induced dilation (FID) was impaired by >50% in obese compared with lean rats. Similar to acetylcholine, responses to FID were restored to normal by a low-carbohydrate diet. N(omega)-nitro-L-arginine methyl ester (10 microM), an inhibitor of nitric oxide (NO) synthase, inhibited acetylcholine- and flow-induced dilation in lean rats, but it had no effect on acetylcholine- or flow-induced vasodilation in obese rats on a low-carbohydrate diet. Tetraethylammonium, a nonspecific K(+) channel antagonist, blocked flow-dependent dilation in the obese rats, suggesting that the improvement in function was mediated by a hyperpolarizing factor independent of NO. In conclusion, obesity-induced impairment in endothelium-dependent vasodilation of coronary arterioles can be dramatically improved with a low-carbohydrate diet most likely through the production of a hyperpolarizing factor independent of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号