首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanisms underlying ischemia-reperfusion-induced renal proximal tubule damage, we analyzed the expression of the Na+-dependent phosphate (Na+/Pi) cotransporter NaPi-2 in brush border membranes (BBM) isolated from rats which had been subjected to 30 min renal ischemia and 60 min reperfusion. Na+/Pi cotransport activities of the BBM vesicles were also determined. Ischemia caused a significant decrease (about 40%, P < 0.05) in all forms of NaPi-2 in the BBM, despite a significant increase (31+/-3%, P < 0.05) in the Na+/Pi cotransport activity. After reperfusion, both NaPi-2 expression and Na+/Pi cotransport activity returned to control levels. In contrast with Na+/Pi cotransport, ischemia significantly decreased Na+-dependent glucose cotransport but did not affect Na+-dependent proline cotransport. Reperfusion caused further decreases in both Na+/glucose (by 60%) and Na+/proline (by 33%) cotransport. Levels of NaPi-2 were more reduced in the BBM than in cortex homogenates, suggesting a relocalization of NaPi-2 as a result of ischemia. After reperfusion, NaPi-2 levels returned to control values in both BBM and homogenates. These data indicate that the NaPi-2 protein and BBM Na+/Pi cotransport activity respond uniquely to reversible renal ischemia and reperfusion, and thus may play an important role in maintaining and restoring the structure and function of the proximal tubule.  相似文献   

2.
Studies in respiratory alkalotic or short-term phosphate deprived rats raised the possibility that in straight portion of proximal tubules (PST) cAMP might be not a mediator of PTH in inhibition of phosphate reabsorption. The present experiments directly compared the sensitivity of Na-dependent phosphate [32P] (Na-Pi) uptake to PTH or cAMP by PCT or PST cells freshly prepared from outer cortex and outer stripe of outer medulla of rat kidney. The purity of the cells was examined by activity of enzymes specific for PST i.e. glutamine synthetase, gamma-glutamyl transpeptidase and creatine kinase, a marker enzyme for medullary thick ascending limb (MTAL) and distal convoluted tubule. Similar inhibition of Na-Pi uptake by 1-34 bPTH by PST and PCT cells was observed: -33.0 and -30.0% (ns), respectively. In contrast, dibutyryl cAMP decreased Na-Pi uptake only by PCT but not by PST cells: -31.0 and -3.6% (p<0.02), respectively. The 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, resulted in slight stimulation of Na-Pi uptake by PST but strong inhibition by PCT cells: 7.8 vs -26.0% (p<0.001). In contrast to PCT in PST cells cAMP seems to play a minor role as a mediator of inhibition of Na-Pi uptake by PTH.  相似文献   

3.
Phosphate deprivation causes a resistance to the phosphaturic effect of parathyroid hormone (PTH). The present study determined whether acute phosphate deprivation alters basal or stimulated activities of key enzymes of the cyclic adenosine monophosphate (cAMP) metabolism in microdissected proximal convoluted and proximal straight tubules, since blunted cAMP levels in these proximal subsegments might account for refractoriness to the effect of PTH on phosphate reabsorption in the proximal convoluted and proximal straight tubule segments. In the proximal convoluted tubules of rats fed a normal-phosphate diet (NPD), PTH increased the adenylate cyclase activity by tenfold. In the proximal convoluted tubule of rats fed a low-phosphate diet (LPD), PTH also increased the adenylate cyclase activity by tenfold. In addition, forskolin increased the adenylate cyclase activity to levels similar to PTH in the proximal convoluted tubule of rats fed NPD or LPD. In the proximal straight tubule of rats fed NPD, PTH resulted in an approximately fivefold increase in adenylate cyclase activity. In the proximal straight tubule of rats fed LPD, PTH resulted in a fourfold increase in adenylate cyclase activity. The forskolin-stimulated adenylate cyclase activity was markedly decreased (46%) in the proximal straight tubule of phosphate-deprived rats. The cAMP-phosphodiesterase activity in the proximal convoluted tubule was significantly increased by 26% in phosphate-deprived rats. The cAMP-phosphodiesterase activities in the proximal straight tubules from rats fed NPD or LPD were similar. We conclude that distinct differences in key enzymes of cAMP metabolism exist in the proximal convoluted and proximal straight tubule subsegments. Further, phosphate deprivation affects the cAMP-phosphodiesterase and adenylate cyclase activities differently in these nephron subsegments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The sodium-dependent phosphate (Na/P(i)) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of P(i). The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in P(i) reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/P(i) transporters. Pdzk1(-/-) mice adapted to chronic low P(i) diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/P(i) transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/P(i) transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low P(i) concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/P(i) transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c.  相似文献   

5.
The aim of this study is to investigate the role of the proximal tubule in microalbuminuria in the early stage of diabetic nephropathy. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (50 mg/kg, i.v.). After 2 weeks, albumin delivery in the proximal tubule was measured using micropuncture and the endocytosis process of FITC-labeled albumin was evaluated with immunoelectron microscopy. Albumin was significantly reabsorbed in the proximal convoluted tubule (PCT) of controls (0.39+/-0.05 ng/min at early PCT to 0.17+/-0.08 at late PCT, P<0.05), whereas albumin reabsorption was inhibited in diabetic rats (0.27+/-0.05 to 0.21+/-0.08). Immunogold study revealed that FITC-albumin was significantly less reabsorbed in endosomes and lysosomes of S1 segments in diabetic rats than in controls (endosome: 1.20+/-0.10 vs 2.16+/-0.15 microm-1, P<0.0001; lysosome: 0.26+/-0.03 vs 0.83+/-0.07, P<0.0001). The expression of megalin, an endocytosis receptor, was decreased at the apical membrane of PCT in diabetic rats. The lipid peroxidation production in the proximal tubule was significantly increased in diabetic rats. In conclusion, albuminuria in early-stage diabetic rats can be partly explained by a decreased albumin endocytosis with reduced megalin expression and with increased lipid peroxidation in the proximal tubule.  相似文献   

6.
7.
8.
Renal parathyroid hormone (PTH) action is often studied at high doses (100 microg PTH/kg) that lower mean arterial pressure significantly, albeit transiently, complicating interpretation of studies. Little is known about the effect of acute hypotension on proximal tubule Na(+) transporters. This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 microg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-P(i) cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed in renal cortical membranes fractionated on sorbitol density gradients. Aortic clamp-induced acute hypotension (from 100 +/- 3 to 78 +/- 2 mmHg) provoked a 62% decrease in urine output and a significant decrease in volume flow from the proximal tubule detected as a 66% decrease in endogenous lithium clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (<2 min) decreased arterial blood pressure to 51 +/- 3 mmHg, decreased urine output, and shifted NHE3 and NaPi2 out of the low-density membranes enriched in apical markers. PTH at much lower doses (<1.4 microg.kg(-1).h(-1)) did not change blood pressure and was diuretic. In conclusion, acute hypotension per se increases proximal tubule Na(+) reabsorption without changing NHE3 or NaPi2 subcellular distribution, indicating that trafficking of transporters to the surface is not the likely mechanism; in comparison, hypotension secondary to high-dose PTH blocks the primary diuretic effect of PTH but does not inhibit the PTH-stimulated redistribution of NHE3 and NaPi2 to the base of the microvilli.  相似文献   

9.
We have previously shown that neonate rabbit tubules have a lower chloride permeability but comparable mannitol permeability compared with adult proximal tubules. The surprising finding of lower chloride permeability in neonate proximals compared with adults impacts net chloride transport in this segment, which reabsorbs 60% of the filtered chloride in adults. However, this maturational difference in chloride permeability may not be applicable to other species. The present in vitro microperfusion study directly examined the chloride and mannitol permeability using in vitro perfused rat proximal tubules during postnatal maturation. Whereas there was no maturational change in mannitol permeability, chloride permeability was 6.3 +/- 1.3 x 10(-5) cm/s in neonate rat proximal convoluted tubule and 16.1 +/- 2.3 x 10(-5) cm/s in adult rat proximal convoluted tubule (P < 0.01). There was also a maturational increase in chloride permeability in the rat proximal straight tubule (5.1 +/- 0.6 x 10(-5) cm/s vs. 9.3 +/- 0.6 x 10(-5) cm/s, P < 0.01). There was no maturational change in bicarbonate-to-chloride permeabilities (P(HCO3)/P(Cl)) in the rat proximal straight tubules (PST) and proximal convoluted tubules (PCT) or in the sodium-to-chloride permeability (P(Na)/P(Cl)) in the proximal straight tubule; however, there was a significant maturational decrease in proximal convoluted tubule P(Na)/P(Cl) with postnatal development (1.31 +/- 0.12 in neonates vs. 0.75 +/- 0.06 in adults, P < 0.001). There was no difference in the transepithelial resistance measured by current injection and cable analysis in the PCT, but there was a maturational decrease in the PST (7.2 +/- 0.8 vs. 4.6 +/- 0.1 ohms x cm2, P < 0.05). These studies demonstrate there are maturational changes in the rat paracellular pathway that impact net NaCl transport during development.  相似文献   

10.
The effect of ischemia induced acute renal failure (ARF) on the transport of phosphate (Pi) after early (15-30 min) and prolonged (60 min) ischemia in the brush border membrane vesicles (BBMV) from rat renal cortex was studied. Sodium-dependent transport of Pi declined significantly and progressively due to ischemia. Western blot analysis of BBM from ischemic rats showed decreased expression of NaPi-2. A compensatory increase was observed in Pi uptake in BBMV from contralateral kidneys. There was no significant difference in NaPi-2 expression between BBMV from sham and contralateral kidneys. Early blood reperfusion for 15 min after 30 min ischemia caused further decline in Pi uptake. Prolonged reperfusion for 120 min caused partial reversal of transport activities in 30-min ischemic rats. However, no improvement in the transport of Pi was observed in 60-min ischemic rats after 120 min of blood reperfusion. Kinetic studies showed that the effect of ischemia and blood reperfusion was dependent on the Vmax of the Na-Pi transporter. Western blot analysis showed increased expression of NaPi-2 in the BBMs from ischemia-reperfusion animals. Further, a shift in the association of Na ions to transport one molecule of Pi was observed under different extracellular Na concentrations [Na]o. Feeding rats with low Pi diet and/or treatment with thyroid hormone (T3) prior to ischemia resulted in increased basal Pi transport. Ischemia caused similar decline in Pi transport in BBM from LPD and/or T3 animals. However, recovery in these animals was faster than the normal Pi diet fed (NPD) animals. The study suggests a change in the intrinsic properties of the Na-Pi transporter in rat kidneys due to ischemia. The study also indicates that treatment with T3 and feeding LPD prior to ischemia caused faster recovery of phosphate uptake due to ischemia-reperfusion injury.  相似文献   

11.
The mechanisms and control of transepithelial inorganic sulfate (Si) transport by primary cultures of chick renal proximal tubule monolayers in Ussing chambers were determined. The competitive anion, S2 O 3 2- (5 mM), reduced both unidirectional reabsorptive and secretory fluxes and net Si reabsorption with no effect on electrophysiological properties. The carbonic anhydrase (CA) inhibitor ethoxzolamide decreased net Si reabsorption approximately 45%. CAII protein and activity were detected in isolated chick proximal tubules by immunoblots and biochemical assay, respectively. Cortisol reduced net Si reabsorption up to approximately 50% in a concentration-dependent manner. Thyroid hormone increased net Si reabsorption threefold in 24 h, and parathyroid hormone (PTH) acutely stimulated net Si reabsorption approximately 45%. These data indicate that CA participates in avian proximal tubule active transepithelial Si reabsorption, which cortisol directly inhibits and T3 and PTH directly stimulate.  相似文献   

12.
Rabbit nephron segments of proximal convoluted tubules (PCT); proximal straight tubules (PST); cortical and medullary thick ascending limbs of Henle's loop (CAL, MAL); and cortical, outer medullary, and inner medullary collecting tubules (CCT, OMCT, IMCT) were individually microdissected and grown in monolayer culture in hormone supplemented, defined media. Factors favoring a rapid onset of proliferation included young donor age, distal tubule origin, and the addition of 3% fetal calf serum to the medium. All primary cultures had polarized morphology with apical microvilli facing the medium and basement membrane-like material adjacent to the dish. Differentiated properties characteristic of the tubular epithelium of origin retained in cultures included ultrastructural characteristics and cytochemically demonstrable marker enzyme proportions. PCT and PST were rich in alkaline phosphatase; CAL stained strongly for NaK-ATPase; CCT contained two cell populations with regard to cytochrome oxidase reaction. A CCT-specific anti-keratin antibody (aLEA) was immunolocalized in CCT cultures, and a PST cytokeratin antibody stained PST cultures. The biochemical response of adenylate cyclase to putative stimulating agents was the same in primary cultures as in freshly isolated tubules. In PCT and PST adenylate cyclase activity was stimulated by parathyroid hormone (PTH) but not by arginine vasopressin (AVP); CAL and MAL adenylate cyclase was stimulated by neither PTH nor AVP; CCT, OMCT, and IMCT adenylate cyclase was stimulated by AVP but not by PTH. NaF stimulated adenylate cyclase activity in every cultured segment. It is concluded that primary cultures of individually microdissected rabbit PCT, PST, CAL, MAL, CCT, OMCT, and IMCT retain differentiated characteristics with regard to ultrastructure, marker enzymes, cytoskeletal proteins, and hormone response of adenylate cyclase and provide a new system for studying normal and abnormal functions of the heterogeneous tubular epithelia in the kidney.  相似文献   

13.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

14.
With a novel antibody against the rat Na(+)-D-glucose cotransporter SGLT2 (rSGLT2-Ab), which does not cross-react with rSGLT1 or rSGLT3, the ~75-kDa rSGLT2 protein was localized to the brush-border membrane (BBM) of the renal proximal tubule S1 and S2 segments (S1 > S2) with female-dominant expression in adult rats, whereas rSglt2 mRNA expression was similar in both sexes. Castration of adult males increased the abundance of rSGLT2 protein; this increase was further enhanced by estradiol and prevented by testosterone treatment. In the renal BBM vesicles, the rSGLT1-independent uptake of [(14)C]-α-methyl-D-glucopyranoside was similar in females and males, suggesting functional contribution of another Na(+)-D-glucose cotransporter to glucose reabsorption. Since immunoreactivity of rSGLT2-Ab could not be detected with certainty in rat extrarenal organs, the SGLT2 protein was immunocharacterized with the same antibody in wild-type (WT) mice, with SGLT2-deficient (Sglt2 knockout) mice as negative control. In WT mice, renal localization of mSGLT2 protein was similar to that in rats, whereas in extrarenal organs neither mSGLT2 protein nor mSglt2 mRNA expression was detected. At variance to the findings in rats, the abundance of mSGLT2 protein in the mouse kidneys was male dominant, whereas the expression of mSglt2 mRNA was female dominant. Our results indicate that in rodents the expression of SGLT2 is kidney-specific and point to distinct sex and species differences in SGLT2 protein expression that cannot be explained by differences in mRNA.  相似文献   

15.
16.
The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.  相似文献   

17.
Phosphate reabsorption in the renal proximal tubule occurs mostly via the type IIa Na+-phosphate cotransporter (NaPi-IIa) in the brush border membrane (BBM). The activity and localization of NaPi-IIa are regulated, among other factors, by parathyroid hormone (PTH). NaPi-IIa interacts in vitro via its last three COOH-terminal amino acids with the PDZ protein Na+/H+-exchanger isoform 3 regulatory factor (NHERF)-1 (NHERF1). Renal phosphate reabsorption in Nherf1-deficient mice is altered, and NaPi-IIa expression in the BBM is reduced. In addition, it has been proposed that NHERF1 and NHERF2 are important for the coupling of PTH receptors (PTHRs) to phospholipase C (PLC) and the activation of the protein kinase C pathway. We tested the role of NHERF1 in the regulation of NaPi-IIa by PTH in Nherf1-deficient mice. Immunohistochemistry and Western blotting demonstrated that stimulation of apical and basolateral receptors with PTH-(1–34) led to internalization of NaPi-IIa in wild-type and Nherf1-deficient mice. Stimulation of only apical receptors with PTH-(3–34) failed to induce internalization in Nherf1-deficient mice. Expression and localization of apical PTHRs were similar in wild-type and Nherf1-deficient mice. Activation of the protein kinase C- and A-dependent pathways with 1,2-dioctanoyl-sn-glycerol or 8-bromo-cAMP induced normal internalization of NaPi-IIa in wild-type, as well as Nherf1-deficient, mice. Stimulation of PLC activity due to apical PTHRs was impaired in Nherf1-deficient mice. These data suggest that NHERF1 in the proximal tubule is important for PTH-induced internalization of NaPi-IIa and, specifically, couples the apical PTHR to PLC. phosphate cotransporter; PDZ protein; parathyroid hormone; proximal tubule  相似文献   

18.
In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na(+) + K(+))-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na(+) + K(+))-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion.  相似文献   

19.
L Sievers  P Kugler 《Histochemistry》1986,86(2):215-220
The reabsorption of ovalbumin double labelled with fluorescein isothiocyanate (FITC) in the kidneys of normal and castrated male and female rats was investigated using fluorometry and fluorescence microscopy. The animals received an intravenous injection of either 2 or 7 mg fluorescein-thiocarbamyl (FTC)-ovalbumin per kilogram bodyweight (bw) and were killed 4 or 8 min post-injection. Animals injected with unlabelled ovalbumin (7.0 mg/kg bw) served as controls. Fluorescence microscopy revealed that FTC-ovalbumin was reabsorbed exclusively in the renal proximal tubule, the highest level of reabsorption being observed in its first part. Four and eight minutes after the injection, FTC-ovalbumin was only observed in apical reabsorption vacuoles, with lysosomes exhibiting no specific fluorescence. Fluorometric determinations for the renal homogenate supernatant showed that the renal reabsorption of FTC-ovalbumin was up to 24% higher in normal females than in normal males. Castration resulted in a significant increase in renal reabsorption in male rats (up to 38%; significant), whereas a minor decrease was observed in castrated females. The renal uptake differences in normal and castrated animals are discussed in the light of the sex-hormone-dependent catabolism of lysosomal proteins in the renal proximal tubule of rats.  相似文献   

20.
Summary The reabsorption of ovalbumin double labelled with fluorescein isothiocyanate (FITC) in the kidneys of normal and castrated male and female rats was investigated using fluorometry and fluorescence microscopy. The animals received an intravenous injection of either 2 or 7 mg fluorescein-thiocarbamyl (FTC)-ovalbumin per kilogram bodyweight (bw) and were killed 4 or 8 min post-injection. Animals injected with unlabelled ovalbumin (7.0 mg/kg bw) served as controls. Fluorescence microscopy revealed that FTC-ovalbumin was reabsorbed exclusively in the renal proximal tubule, the highest level of reabsorption being observed in its first part. Four and eight minutes after the mjection, FTC-ovalbumin was only observed in apical reabsorption vacuoles, with lysosomes exhibiting no specific fluoreseence. Fluorometric determinations for the renal homogenate supernatant showed that the renal reabsorption of FTC-ovalbumin was up to 24% higher in normal females than in normal males. Castration resulted in a significant increase in renal reabsorption in male rats (up to 38%; significant), whereas a minor decrease was observed in castrated females. The renal uptake differences in normal and castrated animals are discussed in the light of the sex-hormone-dependent catabolism of lysosomal proteins in the renal proximal tubule of rats.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号