共查询到20条相似文献,搜索用时 15 毫秒
1.
In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17beta-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 microg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17beta-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 +/- 7 mmHg before the application of 17beta-estradiol (0.01 microg/ml) to the spinal cord, whereas it averaged only 23 +/- 4 mmHg 30 min after application (P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17beta-estradiol. Application of 17beta-estradiol in a dose of 0.001 microg/ml had no effect on the exercise pressor reflex (n = 5). We conclude that the concentration of 17beta-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats. 相似文献
2.
3.
Hayashi N Hayes SG Kaufman MP 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,281(4):R1127-R1133
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles. 相似文献
4.
Kindig AE Hayes SG Kaufman MP 《American journal of physiology. Heart and circulatory physiology》2007,293(5):H2995-H3000
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch. 相似文献
5.
Although mesencephalic locomotor region (MLR) stimulation and the exercise pressor reflex have been shown to increase whole nerve renal sympathetic activity, it is not known whether these mechanisms converge onto the same population of renal sympathetic postganglionic efferents. In decerebrate cats, we examined the responses of single renal sympathetic postganglionic efferents to stimulation of the MLR and the exercise pressor reflex (i.e., static contraction of the triceps surae muscles). We found that, in most instances (24 of 28 fibers), either MLR stimulation or the muscle reflex, but not both, increased the discharge of renal postganglionic sympathetic efferents. In addition, we found that renal sympathetic efferents that responded to static contraction while the muscles were freely perfused responded more vigorously to static contraction during circulatory arrest. Moreover, stretch of the calcaneal (Achilles) tendon stimulated the same renal sympathetic efferents as did static contraction. These findings suggest that MLR stimulation and the exercise pressor reflex do not converge onto the same renal sympathetic postganglionic efferents. 相似文献
6.
Previously, intravenous injection of 17beta-estradiol in decerebrate male cats was found to attenuate central command but not the exercise pressor reflex. This latter finding was surprising because the dorsal horn, the spinal site receiving synaptic input from thin-fiber muscle afferents, is known to contain estrogen receptors. We were prompted, therefore, to reexamine this issue. Instead of injecting 17beta-estradiol intravenously, we applied it topically to the L(7) and S(1) spinal cord of male decerebrate cats. We found that topical application (150-200 micro l) of 17beta-estradiol in concentrations of 0.01, 0.1, and 1 micro g/ml had no effect on the exercise pressor reflex, whereas a concentration of 10 micro g/ml attenuated the reflex. We conclude that, in male cats, estrogen can only attenuate the exercise pressor reflex in concentrations that exceed the physiological level. 相似文献
7.
McCord JL Tsuchimochi H Yamauchi K Leal A Kaufman MP 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(4):971-979
In decerebrate rats, we reported previously that the exercise pressor reflex arising from a limb whose femoral artery was occluded for 72 h before the experiment was significantly higher than the exercise pressor reflex arising from a contralateral freely perfused limb. These findings prompted us to examine whether reactive oxygen species contributed to the augmented pressor reflex in rats with femoral artery occlusion. We found that the pressor reflex arising from the limb whose femoral artery was occluded for 72 h before the experiment (31 ± 5 mmHg) was attenuated by tempol (10 mg), a superoxide dismutase (SOD) mimetic (18 ± 5 mmHg, n = 9, P < 0.05), that was injected into the arterial supply of the hindlimb. In contrast, the pressor reflex arising from a freely perfused hindlimb (20 ± 3 mmHg) was not attenuated by tempol (17 ± 4 mmHg, n = 10, P = 0.49). Nevertheless, we found no difference in the increase in 8-isoprostaglandin F(2α) levels, an index of reactive oxygen species, in response to contraction between freely perfused (3.76 ± 0.82 pg/ml, n = 19) and 72-h occluded (3.51 ± 0.92 pg/ml, n = 22, P = 0.90) hindlimbs. Moreover, tempol did not reduce the 8-isoprostaglandin F(2α) levels during contraction in either group (P > 0.30). A second SOD mimetic, tiron (200 mg/kg), had no effect on the exercise pressor reflex in either the rats with freely perfused hindlimbs or in those with occluded femoral arteries. These findings suggest that tempol attenuated the exercise pressor reflex in the femoral artery-occluded hindlimb by a mechanism that was independent of its ability to scavenge reactive oxygen species. 相似文献
8.
Leal AK McCord JL Tsuchimochi H Kaufman MP 《American journal of physiology. Heart and circulatory physiology》2011,301(5):H2140-H2146
Cyclooxygenase metabolites stimulate or sensitize group III and IV muscle afferents, which comprise the sensory arm of the exercise pressor reflex. The thromboxane (TP) receptor binds several of these metabolites, whose concentrations in the muscle interstitium are increased by exercise under freely perfused conditions and even more so under ischemic conditions, which occur in peripheral artery disease. We showed that the exercise pressor reflex is greater in rats with simulated peripheral artery disease than in rats with freely perfused limbs. These findings prompted us to test the hypothesis that the TP receptor contributes to the exaggerated exercise pressor reflex occurring in a rat model of peripheral artery disease. We compared the cardiovascular responses to static contraction and stretch before and after femoral arterial injections of daltroban (80 μg), a TP receptor antagonist. We performed these experiments in decerebrate rats whose femoral arteries were ligated 72 h before the experiment (a model of simulated peripheral artery disease) and in control rats whose hindlimbs were freely perfused. Daltroban reduced the pressor response to static contraction in both freely perfused (n = 6; before: Δ12 ± 2 mmHg, after: Δ6 ± 2 mmHg, P = 0.024) and 72-h-ligated rats (n = 10; before: Δ25 ± 3 mmHg, after: Δ7 ± 4 mmHg, P = 0.001). Likewise, daltroban reduced the pressor response to stretch in the freely perfused group (n = 9; before: Δ30 ± 3 mmHg, after: Δ17 ± 3 mmHg, P < 0.0001) and in the ligated group (n = 11; before: Δ37 ± 5 mmHg, after: Δ23 ± 3 mmHg, P = 0.016). Intravenous injections of daltroban had no effect on the pressor response to contraction. We conclude that the TP receptor contributes to the pressor responses evoked by contraction and stretch in both freely perfused rats and rats with simulated peripheral artery disease. 相似文献
9.
Potentiation of the exercise pressor reflex by muscle ischemia 总被引:3,自引:0,他引:3
The reflex responses to static contraction are augmented by ischemia. The metabolic "error signals" that are responsible for these observed responses are unknown. Therefore this study was designed to test the hypothesis that static contraction-induced pressor responses, which are enhanced during muscle ischemia, are the result of alterations in muscle oxygenation, acid-base balance, and K+. Thus, in 36 cats, the pressor response, active muscle blood flow, and muscle venous pH, PCO2, PO2, lactate, and K+ were compared during light and intense static contractions with and without arterial occlusion. During light contraction (15-16% of maximal), active muscle blood flow increased without and decreased with arterial occlusion (+35 +/- 12 vs. -60 +/- 11%). Arterial occlusion augmented these pressor responses by 132 +/- 25%. Without arterial occlusion, changes (P less than 0.05) were seen in PO2, O2 content, PCO2, and K+. Lactate and pH were unchanged. With arterial occlusion, changes in muscle PCO2 were augmented and significant changes were seen in pH and lactate. During intense static contraction (67-69% of maximal), muscle blood flow decreased without arterial occlusion (-39 +/- 9%) and decreased further during occlusion (-81 +/- 6%). Arterial occlusion augmented the pressor responses by 39 +/- 12%. All metabolic variables increased during contraction without arterial occlusion, but occlusion failed to augment any of these changes. These data suggest that light static ischemic contractions cause increases in muscle PCO2 and lactate and decreases in pH that may signal compensatory reflex-induced changes in arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
We tested the hypothesis that intrathecal injection of clonidine, an alpha 2-adrenergic agonist, attenuated the reflex cardiovascular and ventilatory responses to static muscular contraction in cats. Before clonidine (1 microgram in 0.2 ml), contraction-induced reflex increases (n = 10) in mean arterial pressure and ventilation averaged 25 +/- 3 mmHg and 359 +/- 105 ml/min, respectively, whereas after clonidine these increases averaged 8 +/- 4 mmHg and 200 +/- 114 ml/min, respectively (P less than 0.05). Clonidine had no effect on the heart rate response to contraction. Intrathecal injection of yohimbine (10 micrograms; n = 5), an alpha 2-adrenergic antagonist, but not prazosin (10 micrograms; n = 3), an alpha 1-adrenergic antagonist, prevented the attenuating effects of clonidine on the reflex pressor and ventilatory responses to contraction. Our findings were not due to the spread of clonidine to the medulla, because the reflex pressor and ventilatory responses to contraction were not attenuated by injection of clonidine (1 microgram) onto the medulla (n = 3). In addition, our findings were not due to a clonidine-induced withdrawal of sympathetic outflow, because intrathecal injection of clonidine (1 microgram) did not attenuate increases in arterial pressure and ventilation evoked by high-intensity electrical stimulation of the cut central end of the sciatic nerve (n = 5). Furthermore, our findings were not due to a local anesthetic action of clonidine, because application of this agent to the dorsal roots had no effect on the discharge of group IV muscle afferents. We conclude that stimulation of alpha 2-adrenergic receptors in the spinal cord attenuates the reflex pressor and ventilatory responses to static contraction. 相似文献
11.
Using gonadally intact female cats, we showed previously that estrogen, applied topically to the spinal cord, attenuated the exercise pressor reflex. Although the mechanism by which estrogen exerted its attenuating effect is unknown, this steroid hormone has been shown to influence spinal opioid pathways, which in turn have been implicated in the regulation of the exercise pressor reflex. These findings prompted us to test the hypothesis that opioids mediate the attenuating effect of estrogen on the exercise pressor reflex in both gonadally intact female and ovariectomized cats. We therefore applied 200 microl of 17beta-estradiol (0.01 microg/ml) with and without the addition of 1,000 microg naloxone, a mu- and delta-opioid antagonist, to a spinal well covering the L6-S1 spinal cord in decerebrated female cats that were either gonadally intact or ovariectomized. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that, in gonadally intact cats, the attenuating effect of estrogen was more pronounced than that in ovariectomized cats. We also found that, in gonadally intact female cats, naloxone partly reversed the attenuation of the pressor response to static contraction caused by spinal estrogen application. For example, in intact cats, the pressor response to contraction before estrogen application averaged 39 +/- 4 mmHg (n = 10), whereas the pressor response 60 min afterward averaged only 18 +/- 4 mmHg (P < 0.05). In contrast, the pressor response to contraction before estrogen and naloxone application averaged 33 +/- 5 mmHg (n = 11), whereas afterward it averaged 27 +/- 6 mmHg (P < 0.05). In ovariectomized cats, naloxone was less effective in reversing the attenuating effect of estrogen on the exercise pressor reflex. 相似文献
12.
13.
Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip 总被引:1,自引:0,他引:1
Mostoufi-Moab Sogol; Widmaier Eric J.; Cornett Jacob A.; Gray Kristen; Sinoway Lawrence I. 《Journal of applied physiology》1998,84(1):277-283
Mostoufi-Moab, Sogol, Eric J. Widmaier, Jacob A. Cornett,Kristen Gray, and Lawrence I. Sinoway. Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip. J. Appl. Physiol. 84(1): 277-283, 1998.We examined the effects of unilateral, nondominant forearmtraining (4 wk) on blood pressure and forearm metabolites duringischemic and nonischemic rhythmic handgrip (30 1-s contractions/min at25% maximal voluntary contraction). Contractions were performed by 10 subjects with the forearm enclosed in a pressurized Plexiglas tank toinduce ischemic conditions. Training increased the endurance time inthe nondominant arm by 102% (protocol1). In protocol 2,tank pressure was increased in increments of 10 mmHg/min to +50 mmHg.Training raised the positive-pressure threshold necessary to engage thepressor response. In protocol 3,handgrip was performed at +50 mmHg and venous blood samples wereanalyzed. Training attenuated mean arterial pressure (109 ± 5 and98 ± 4 mmHg pre- and posttraining, respectively, P < 0.01), venous lactate (2.9 ± 0.4 and 1.8 ± 0.3 mmol/l pre- and posttraining, respectively,P < 0.01), and the pH response (7.21 ± 0.02 and 7.25 ± 0.01, pre- and posttraining, respectively, P < 0.01). However, deep venousO2 saturation was unchanged.Training increased the positive-pressure threshold for metaboreceptorengagement, reduced metabolite concentrations, and reduced meanarterial pressure during ischemic exercise. 相似文献
14.
Hayes SG McCord JL Rainier J Liu Z Kaufman MP 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1720-H1725
The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (P<0.05) the pressor responses to both contraction and to lactic acid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex. 相似文献
15.
McIlveen SA Hayes SG Kaufman MP 《American journal of physiology. Heart and circulatory physiology》2001,280(4):H1454-H1463
In decerebrate unanesthetized cats, we determined whether either "central command," the exercise pressor reflex, or the muscle mechanoreceptor reflex reset the carotid baroreflex. Both carotid sinuses were vascularly isolated, and the carotid baroreceptors were stimulated with pulsatile pressure. Carotid baroreflex function curves were determined for aortic pressure, heart rate, and renal vascular conductance. Central command was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) in cats that were paralyzed. The exercise pressor reflex was evoked by statically contracting the triceps surae muscles in cats that were not paralyzed. Likewise, the muscle mechanoreceptor reflex was evoked by stretching the calcaneal tendon in cats that were not paralyzed. We found that each of the three maneuvers shifted upward the linear relationship between carotid sinus pressure and aortic pressure and heart rate. Each of the maneuvers, however, had no effect on the slope of these baroreflex function curves. Our findings show that central command arising from the MLR as well as the exercise pressor reflex are capable of resetting the carotid baroreflex. 相似文献
16.
17.
18.
Basnayake SD Hyam JA Pereira EA Schweder PM Brittain JS Aziz TZ Green AL Paterson DJ 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(4):881-891
Groups III and IV afferents carry sensory information regarding the muscle exercise pressor reflex, although the central integrating circuits of the reflex in humans are still poorly defined. Emerging evidence reports that the periaqueductal gray (PAG) could be a major site for integrating the "central command" component that initiates the cardiovascular response to exercise, since this area is activated during exercise and direct stimulation of the dorsal PAG causes an increase in arterial blood pressure (ABP) in humans. Here we recorded local field potentials (LFPs) from various "deep" brain nuclei during exercise tasks designed to elicit the muscle pressor reflex. The patients studied had undergone neurosurgery for the treatment of movement or pain disorders, thus had electrodes implanted stereotactically either in the PAG, subthalamic nucleus, globus pallidus interna, thalamus, hypothalamus, or anterior cingulate cortex. Fast Fourier transform analysis was applied to the neurograms to identify the power of fundamental spectral frequencies. Our PAG patients showed significant increases in LFP power at frequencies from 4 to 8 Hz (P < 0.01), 8 to 12 Hz (P < 0.001), and 12 to 25 Hz (P < 0.001). These periods were associated with maintained elevated ABP during muscle occlusion following exercise. Further increases in exercise intensity resulted in corresponding increases in PAG activity and ABP. No significant changes were seen in the activity of other nuclei during occlusion. These electrophysiological data provide direct evidence for a role of the PAG in the integrating neurocircuitry of the exercise pressor reflex in humans. 相似文献
19.
20.
Increased mechanoreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. 总被引:1,自引:0,他引:1
Holly R Middlekauff Lawrence I Sinoway 《Journal of applied physiology》2007,102(1):492-4; discussion 496