首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The MapReduce model uses a barrier between the Map and Reduce stages. This provides simplicity in both programming and implementation. However, in many situations, this barrier hurts performance because it is overly restrictive. Hence, we develop a method to break the barrier in MapReduce in a way that improves efficiency. Careful design of our barrier-less MapReduce framework results in equivalent generality and retains ease of programming. We motivate our case with, and experimentally study our barrier-less techniques in, a wide variety of MapReduce applications divided into seven classes. Our experiments show that our approach can achieve better job completion times than a traditional MapReduce framework. This is due primarily to the interleaving of I/O and computation, and forgoing disk-intensive work. We achieve a reduction in job completion times that is 25% on average and 87% in the best case.  相似文献   

4.
Breaking through the tight junction barrier   总被引:20,自引:8,他引:12       下载免费PDF全文
《The Journal of cell biology》1993,123(6):1631-1633
  相似文献   

5.
6.
Breaking the diffraction barrier: super-resolution imaging of cells   总被引:1,自引:0,他引:1  
Huang B  Babcock H  Zhuang X 《Cell》2010,143(7):1047-1058
Anyone who has used a light microscope has wished that its resolution could be a little better. Now,?after centuries of gradual improvements, fluorescence microscopy has made a quantum leap in its resolving power due, in large part, to advancements over the past several years in a new area of research called super-resolution fluorescence microscopy. In this Primer, we explain the principles of various super-resolution approaches, such as STED, (S)SIM, and STORM/(F)PALM. Then, we describe recent applications of super-resolution microscopy in cells, which demonstrate how these approaches are beginning to provide new insights into cell biology, microbiology, and neurobiology.  相似文献   

7.
8.
The serine protease subtilisin BPN' is a useful catalyst for peptide synthesis when dissolved in high concentrations of a water-miscible organic co-solvent such as N,N-dimethylformamide (DMF). However, in 50% DMF, the k(cat) for amide hydrolysis is two orders of magnitude lower than in aqueous solution. Surprisingly, the k(cat) for ester hydrolysis is unchanged in 50% DMF. To explain this alteration in activity, the structure of subtilisin 8397+1 was determined in 20, 35, and 50% (v/v) DMF to 1.8 A resolution. In 50% DMF, the imidazole ring of His64, the central residue of the catalytic triad, has rotated approximately 180 degrees around the Cbeta-Cgamma bond. Two new water molecules in the active site stabilize the rotated conformation. This rotation places His64 in an unfavorable geometry to interact with the other members of the catalytic triad, Ser221 and Asp32. NMR experiments confirm that the characteristic resonance due to the low barrier hydrogen bond between the His64 and Asp32 is absent in 50% DMF. These experiments provide a clear structural basis for the change in activity of serine proteases in organic co-solvents.  相似文献   

9.
10.
A general concept is described for breaking the diffraction barrier in far-field microscopy through reversible saturable optical transitions. This concept is based on the huge optical nonlinearities required for the saturation that are realized at relatively low light intensities. Thus, subdiffraction resolution in the nanometer scale is feasible under realistic physical conditions. The subdiffraction resolution achievable is expressed in a simple equation as a function of the saturation level of the involved transitions, and experimental examples of fluorescence microscopy techniques with resolution of a few nanometers are given.  相似文献   

11.
12.
13.
14.
15.
The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.  相似文献   

16.
17.
Aminoacyl-tRNA synthetases are responsible for attaching amino acid residues to the tRNA 3'-end. The two classes of synthetases approach tRNA as mirror images, with opposite but symmetrical stereochemistries that allow the class I enzymes to attach amino acid residues to the 2'-hydroxyl group of the terminal ribose, whereas, the class II enzymes attach amino acid residues to the 3'-hydroxyl group. However, we show here that the attachment of cysteine to tRNA(Cys) by the class I cysteinyl-tRNA synthetase (CysRS) is flexible; the enzyme is capable of using either the 2' or 3'-hydroxyl group as the attachment site. The molecular basis for this flexibility was investigated. Introduction of the nucleotide U73 of tRNA(Cys) into tRNA(Val) was found to confer the flexibility. While valylation of the wild-type tRNA(Val) by the class I ValRS was strictly dependent on the terminal 2'-hydroxyl group, that of the U73 mutant of tRNA(Val) occurred at either the 2' or 3'-hydroxyl group. Thus, the single nucleotide U73 of tRNA has the ability to break the stereo barrier of amino acid attachment to tRNA, by mobilizing the 2' and 3'-hydroxyl groups of A76 in flexible geometry with respect to the tRNA acceptor stem.  相似文献   

18.
Although most Vibrio fischeri isolates are capable of symbiosis, the coevolution of certain strains with the Hawaiian bobtail squid, Euprymna scolopes, has led to specific adaptation to this partnership. For instance, strains from different hosts or from a planktonic environment are ineffective squid colonists. Even though bioluminescence is a symbiotic requirement, curiously, symbionts of E. scolopes are dim in culture relative to fish symbionts and free-living isolates. It is unclear whether this dim phenotype is related to the symbiosis or simply coincidental. To further explore the basis of symbiont specificity, we developed an experimental evolution model that utilizes the daily light organ venting behavior of the squid and horizontal acquisition of symbionts for serial passage of cultures. We passaged six populations each derived from the squid-naïve strains of V. fischeri MJ11 (a fish symbiont) and WH1 (a free-living isolate) through a series of juvenile squid light organs. After 15 serially colonized squid for each population, or an estimated 290–360 bacterial generations, we isolated representatives of the light organ populations and characterized their bioluminescence. Multiple evolved lines of both strains produced significantly less bioluminescence both in vitro and in vivo. This reduction in bioluminescence did not correlate with reduced quorum sensing for most isolates tested. The remarkable phenotypic convergence with squid symbionts further emphasizes the importance of bioluminescence in this symbiosis, and suggests that reduced light production is a specific adaptation to the squid.  相似文献   

19.
The PAR clan of polarity regulating genes was initially discovered in a genetic screen searching for genes involved in asymmetric cell divisions in the Caenorhabditis elegans embryo. Today, investigations in worms, flies and mammals have established PAR proteins as conserved and fundamental regulators of animal cell polarization in a broad range of biological phenomena requiring cellular asymmetries. The human homologue of invertebrate PAR-4, a serine–threonine kinase LKB1/STK11, has caught attention as a gene behind Peutz–Jeghers polyposis syndrome and as a bona fide tumour suppressor gene commonly mutated in sporadic cancer. LKB1 functions as a master regulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred to as the AMPK-related kinases, including four human homologues of PAR-1. The role of LKB1 as part of the energy sensing LKB1-AMPK module has been intensively studied, whereas the polarity function of LKB1, in the context of homoeostasis or cancer, has gained less attention. Here, we focus on the PAR-4 identity of LKB1, discussing the weight of evidence indicating a role for LKB1 in regulation of cell polarity and epithelial integrity across species and highlight recent investigations providing new insight into the old question: does the PAR-4 identity of LKB1 matter in cancer?  相似文献   

20.
Mouse-human chimeras have become a novel way to model the interactions between microbial pathogens and human cells, tissues or organs. Diseases studied with human xenografts in severe combined immunodeficient (SCID) mice include Pseudomonas aeruginosa infection in cystic fibrosis, group A streptococci and impetigo, bacillary and amoebic dysentery, and AIDS. In many cases, disease in the human xenograft appears to accurately reproduce the disease in humans, providing a powerful model for identifying virulence factors, host responses to infection and the effects of specific interventions on disease. In this review, we summarize recent studies that have used mouse-human chimeras to understand the pathophysiology of specific bacterial and protozoan infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号