首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mismatch repair and recombination in E. coli   总被引:14,自引:0,他引:14  
M Jones  R Wagner  M Radman 《Cell》1987,50(4):621-626
The involvement of the E. coli methyl-directed and very short patch (vsp) mismatch repair systems in bacteriophage lambda recombination has been studied. Genetic crosses and heteroduplex transfection experiments were performed using lambda phages with sequenced mutations in the cl gene. The results indicate that methyl-directed repair does operate during bacteriophage lambda recombination but generally does not contribute to the formation of recombinants involving close markers. Vsp repair apparently acts during bacteriophage lambda recombination to produce recombinants involving close markers because its action does not involve extensive excision tracts. Marker-specific hyperrecombination and the apparent clustering of genetic exchanges in bacteriophage lambda recombination can be accounted for by the action of the vsp repair system.  相似文献   

2.
Mispair specificity of methyl-directed DNA mismatch correction in vitro   总被引:52,自引:0,他引:52  
To evaluate the substrate specificity of methyl-directed mismatch repair in Escherichia coli extracts, we have constructed a set of DNA heteroduplexes, each of which contains one of the eight possible single base pair mismatches and a single hemimethylated d(GATC) site. Although all eight mismatches were located at the same position within heteroduplex molecules and were embedded within the same sequence environment, they were not corrected with equal efficiencies in vitro. G-T was corrected most efficiently, with A-C, C-T, A-A, T-T, and G-G being repaired at rates 40-80% of that of the G-T mispair. Correction of each of these six mispairs occurred in a methyl-directed manner in a reaction requiring mutH, mutL, and mutS gene products. C-C and A-G mismatches showed different behavior. C-C was an extremely poor substrate for correction while repair of A-G was anomalous. Although A-G was corrected to A-T by the mutHLS-dependent, methyl-directed pathway, repair of A-G to C-G occurred largely by a pathway that is independent of the methylation state of the heteroduplex and which does not require mutH, mutL, or mutS gene products. Similar results were obtained with a second A-G mismatch in a different sequence environment suggesting that a novel pathway may exist for processing A-G mispairs to C-G base pairs. As judged by DNase I footprint analysis, MutS protein is capable of recognizing each of the eight possible base-base mismatches. Use of this method to estimate the apparent affinity of MutS protein for each of the mispairs revealed a rough correlation between MutS affinity and efficiency of correction by the methyl-directed pathway. However, the A-C mismatch was an exception in this respect indicating that interactions other than mismatch recognition may contribute to the efficiency of repair.  相似文献   

3.
R. K. Pearson  M. S. Fox 《Genetics》1988,118(1):13-19
Previous studies of bacteriophage λ recombination have provided indirect evidence that substantial sequence nonhomologies, such as insertions and deletions, may be included in regions of heteroduplex DNA. However, the direct products of heterology-containing heteroduplex DNA--heterozygous progeny phage--have not been observed. We have constructed a series of small insertion and deletion mutations in the cI gene to examine the possibility that small heterologies might be accommodated in heterozygous progeny phage. Genetic crosses were carried out between λcI(-) Oam29 and λcI(+) Pam80 under replication-restricted conditions. Recombinant O(+)P(+) progeny were selected on mutL hosts and tested for cI heterozygosity. Heterozygous recombinants were readily observed with crosses involving insertions of 4 to 19 base pairs (bp) in the cI gene. Thus, nonhomologies of at least 19 bp can be accommodated in regions of heteroduplex DNA during λ recombination. In contrast, when a cI insertion or deletion mutation of 26 bp was present, few of the selected recombinants were heterozygous for cI. Results using a substitution mutation, involving a 26-bp deletion with a 22-bp insertion, suggest that the low recovery of cI heterozygotes containing heterologies of 26 bp or more is due to a failure to encapsidate DNA containing heterologies of 26 bp or more into viable phage particles.  相似文献   

4.
The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there has been no systematic study to determine at what step(s) in recombination mismatch repair acts in vivo. Since heteroduplex is a commonly proposed intermediate in many models of recombination, we have investigated the consequences of mismatch repair on plasmids that are multiply mismatched in heteroduplex structures that are similar to those that might arise during recombination. Plasmids containing multiply mismatched regions were transformed into wild-type and Mut(-) Eschericia coli mutants. There was only a 30-40% reduction in transformation of Mut(+) as compared to mutS and mutL strains for DNAs containing an 18% mismatched heteroduplex. The products obtained from mutS hosts differed from those obtained from Mut(+) hosts in that there were many more colonies containing mixtures of two plasmids, due to survival of both strands of the heteroduplex. There were nearly 10 times more recombinants obtained from the mutS as compared to the wild-type host. Based on these results and those from other studies with E. coli and yeast, we propose that the prevention of recombination between highly diverged DNAs may be at step earlier than heteroduplex formation.  相似文献   

5.
Bacteriophage crosses using density-labeled parents have been carried out under conditions restricting DNA synthesis. The parental material and genetic contributions to progeny manifesting recombination within a genetic interval sufficiently short to exhibit high negative interference have been examined. The unreplicated products of recombination isolated as phage particles appear to contain long continuous heteroduplex regions which are heterozygous for the closely linked markers. Recombination between closely linked markers seems to be the consequence of the removal of base-pair mismatches that are present within the heteroduplex regions. This localized reduction of heterozygosity within the heteroduplex regions that join the parental components of recombinant DNA molecules can account for high negative interference.  相似文献   

6.
The presence of DNA sequence non-homologies limits the parental material contribution to the genomes of unduplicated bacteriophage λ recombinants. Crosses involving closely linked markers within the lacZ region of λ plac5 have been carried out under conditions severely limiting DNA synthesis. The presence of density labels distinguishing the parental phage permits an assessment of their material contribution to the lacZ recombinant phage that emerge.When both parents harbor point mutations, the recombinants exhibit a broad range of relative parental DNA contributions, providing support for the proposal that the lacZ+ recombinants that are detected under these conditions result from mismatch repair processes acting on heterozygous sites within the long regions of heteroduplex structure present in the products of recombination. The presence of a region of non-homology, either a deletion or an insertion sequence, in one of the parents results in a limitation in the material contribution of that parent to the recombinant products. When both parents carry regions of non-homology, the relative parental contributions to recombinant products are further limited and are confined to the density range expected of the products of double-stranded breakage and joining events within the region separating the two mutational sites. These observations suggest that regions of non-homology are excluded from heteroduplex structures and provide support for a role of branch migration of a Holliday (1964) structure in the formation of the heteroduplex regions that are present in the products of recombination.  相似文献   

7.
E. Alani  RAG. Reenan    R. D. Kolodner 《Genetics》1994,137(1):19-39
The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA.  相似文献   

8.
The mutL gene of Salmonella typhimurium LT2 is required for dam-dependent methyl-directed DNA mismatch repair. We have cloned and sequenced the mutL gene of S. typhimurium LT2 and compared its sequence with those of the hexB gene product of the gram-positive bacterium Streptococcus pneumoniae and the PMS1 gene product of the yeast Saccharomyces cerevisiae. MutL was found to be quite similar to the HexB mismatch repair protein of S. pneumoniae and to the mismatch repair protein PMS1 of the yeast S. cerevisiae. The significant similarities among these proteins were confined to their amino-terminal regions and suggest common evolution of the mismatch repair machinery in those organisms. The DNA sequence for mutL predicted a gene encoding a protein of 618 amino acid residues with a molecular weight of 67,761. The assignment of reading frame was confirmed by the construction of a chimeric protein consisting of the first 30 amino acids of LacZ fused to residues 53 through 618 of MutL. Interestingly, the presence of excess amounts of this fusion protein in wild-type mutL+ cells resulted in a trans-dominant effect causing the cell to exhibit a high spontaneous mutation frequency.  相似文献   

9.
Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells and recombine at high frequencies. Calcium phosphate precipitates were used to cotransfect Shope fibroma virus-infected cells with different DNA substrates and the recombinant products assayed by genetic and biochemical methods. We have shown previously that bacteriophage lambda DNAs can be used as substrates in these experiments and recombinants assayed on Escherichia coli following DNA recovery and in vitro packaging. Using this assay it was observed that 2-3% of the phage recovered from crosses between point mutants retained heteroduplex at at least one of the mutant sites. The reliability of this genetic analysis was confirmed using DNA substrates that permitted the direct detection of heteroduplex molecules by denaturant gel electrophoresis and Southern blotting. It was further noted that heteroduplex formation coincided with the onset of both replication and recombination suggesting that poxviruses, like certain bacteriophage, make no clear biochemical distinction between these three processes. The fraction of heteroduplex molecules peaked about 12-hr postinfection then declined later in the infection. This decline was probably due to DNA replication rather than mismatch repair because, while high levels of induced DNA polymerase persisted beyond the time of maximal heteroduplex recovery, we were unable to detect any type of mismatch repair activity in cytoplasmic extracts. These results suggest that, although heteroduplex molecules are formed during the progress of poxviral infection, gene conversion through mismatch repair probably does not produce most of the recombinants. The significance of these observations are discussed considering some of the unique properties of poxviral biology.  相似文献   

10.
We have constructed heteroduplex plasmid DNA that is similar in structure to the heteroduplex DNA expected to be produced during genetic recombination of plasmids, and studied its repair after transformation into different Escherichia coli strains. The heteroduplex DNA was constructed using two different parental plasmids, each of which contained a different ten-nucleotide insertion mutation. The effect of different defined states of dam-methylation on repair was also examined. We found that heteroduplex DNA repair occurred prior to the replication of the substrate DNA 60 to 80% of the time, regardless of the state of DNA methylation. Most excision/synthesis tracts covered two markers separated by 1243 base-pairs, and this process has been termed co-repair. The most efficient co-repair pathway was the Dam-instructed repair pathway that required the mutH, mutL, mutS and uvrD gene products and preferentially used the methylated strand as the template for DNA synthesis. If there was no methylation asymmetry, mismatch nucleotide repair occurred with a similar frequency; however, no strand bias was observed. Co-repair of symmetrically methylated heteroduplex DNA required the mutS and uvrD gene products, while repair of unmethylated heteroduplex DNA also required the mutL and mutH gene products.  相似文献   

11.
In this paper, we present results of crosses designed to elucidate the structure of recombinants in the tail-fiber region of bacteriophage T4, in which a glucosylation-dependent recombinations mechanism is operative, and the cause of the "special" recombination in glycosylated crosses is discussed. We present evidence that, when phage are nonglycosylated, recombination in the tail-fiber region proceeds via long heteroduplex overlaps. Mismatched bases within such regions (in nonglycosylated phage) are repaired efficiently (as contrasted to those of glucosylated phage), but asymmetrically; that is, there may be an equal probability of resolving the mismatch to mutant or wild type.  相似文献   

12.
W. Y. Feng  J. B. Hays 《Genetics》1995,140(4):1175-1186
During infection of homoimmune Escherichia coli lysogens (``repressed infections'), undamaged non-replicating λ phage DNA circles undergo very little recombination. Prior UV irradiation of phages dramatically elevates recombinant frequencies, even in bacteria deficient in UvrABC-mediated excision repair. We previously reported that 80-90% of this UvrABC-independent recombination required MutHLS function and unmethylated d(GATC) sites, two hallmarks of methyl-directed mismatch repair. We now find that deficiencies in other mismatch-repair activities--UvrD helicase, exonuclease I, exonuclease VII, RecJ exonuclease--drastically reduce recombination. These effects of exonuclease deficiencies on recombination are greater than previously observed effects on mispair-provoked excision in vitro. This suggests that the exonucleases also play other roles in generation and processing of recombinagenic DNA structures. Even though dsDNA breaks are thought to be highly recombinagenic, 60% of intracellular UV-irradiated phage DNA extracted from bacteria in which recombination is low--UvrD(-), ExoI(-), ExoVII(-), or RecJ(-)--displays (near-)blunt-ended dsDNA ends (RecBCD-sensitive when deproteinized). In contrast, only bacteria showing high recombination (Mut(+) UvrD(+) Exo(+)) generate single-stranded regions in nonreplicating UV-irradiated DNA. Both recF and recB recC mutations strikingly reduce recombination (almost as much as a recF recB recC triple mutation), suggesting critical requirements for both RecF and RecBCD activity. The mismatch repair system may thus process UV-irradiated DNA so as to initiate more than one recombination pathway.  相似文献   

13.
We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.  相似文献   

14.
C Rayssiguier  C Dohet  M Radman 《Biochimie》1991,73(4):371-374
Interspecific recombination in conjugation between Escherichia coli and Salmonella typhimurium is several orders of magnitude lower than intraspecies recombination and is dependent on the RecA function. This low efficiency is due to a 20% divergence in the DNA sequence. The methyl-directed (mut H,L,S dependent) mismatch repair system appears to control the fidelity of homologous recombination; inactivating one of the Mut functions increases the interspecies recombination at least by 10(3)-fold. The interspecific recombination in mutS or mutL mutants is only approximately 10-fold lower than recombination in homospecific crosses as found after correction for the efficiency of mating and DNA transfer by zygotic induction experiments. The interspecific recombination is dependent on the RecABCD pathway: it was abolished in a recA mutant and decreased approximately 10(3)-fold in a recC mutant.  相似文献   

15.
A screening procedure based on the formation of papillae on individual bacterial colonies was used to isolate mutants of Escherichia coli with high mutation rates in the presence of bromouracil. Most of the mutants obtained had high spontaneous mutation rates and mapped close to the previously known mutators mutT, mutS, mutR, uvrE and mutL. Except for mutants of mutT type, these mutators also showed high mutability by bromouracil. Transfection experiments were performed with heteroduplex lambda DNA to test for mismatch repair. The results suggest a reduced efficiency of repair of mismatched bases in mutators mutS, mutR, uvrE and mutL, whereas mutants mapping as mutT appear normal. The results support a connection between spontaneous and bromouracil-induced mutability and repair of mismatched bases in DNA.  相似文献   

16.
R. M. Schaaper 《Genetics》1989,121(2):205-212
We have previously reported that the Escherichia coli mutator strain mutD5 was defective in the correction of bacteriophage M13mp2 heteroduplex DNA containing a T.G mismatch. Here, this defect was further investigated with regard to its interaction with the mutHLS pathway of mismatch repair. A set of 15 different M13mp2 heteroduplexes was used to measure the mismatch-repair capability of wild-type, mutL and mutD5 cells. Throughout the series, the mutD5 strain proved as deficient in mismatch repair as the mutL strain, indicating that the repair defect is similar in the two strains in both extent and specificity. [One exception was noted in the case a T.G mispair that was subject to VSP (Very Short Patch) repair. VSP repair was abolished by mutL but not by mutD.] Variation in the dam-methylation state of the heteroduplex molecules clearly affected repair in the wild-type strain but had no effect on either the mutD or mutL strain. Finally, mutDmutL or mutDmutS double-mutator strains were no more deficient in mismatch repair as were the single mutator strains. The combined results strongly argue that the mismatch-repair deficiency of mutD5 cells resides in the mutH,L,S-dependent pathway of mismatch repair and that the high mutation rate of mutD strains derives in part from this defect.  相似文献   

17.
Methyl-directed DNA mismatch correction   总被引:51,自引:0,他引:51  
  相似文献   

18.
A covalently closed, circular heteroduplex containing a G-T mismatch and a single hemimethylated d(GATC) site is subject to efficient methyl-directed mismatch correction in Escherichia coli extracts when repair DNA synthesis is severely restricted by limiting the concentration of exogenously supplied deoxyribonucleoside-5'-triphosphates or by supplementing reactions with chain-terminating 2',3'-dideoxynucleoside triphosphates. However, repair under these conditions results in formation of a single-strand gap in the region of the molecule containing the mismatch and the d(GATC) site. These findings indicate that repair DNA synthesis required for methyl-directed correction can initiate in the vicinity of the mispair, and they are most consistent with a repair reaction involving 3'----5' excision (or strand displacement) from the d(GATC) site followed by 5'----3' repair DNA synthesis initiating in the vicinity of the mismatch.  相似文献   

19.
GATC sequence and mismatch repair in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.  相似文献   

20.
Isolation and characterization of the Escherichia coli mutL gene product   总被引:33,自引:0,他引:33  
The Escherichia coli mutL gene product has been purified to near homogeneity from an overproducing clone. The mutL locus encodes a polypeptide of 70,000 daltons as determined by denaturing gel electrophoresis. The native molecular weight of MutL protein as calculated from the sedimentation coefficient of 5.5 S and Stokes radius of 61 A is 139,000 daltons, indicating that MutL exists as a dimer in solution. In addition to its ability to complement methyl-directed DNA mismatch repair in mutL-deficient cell-free extracts, DNase I protection experiments demonstrate that the purified MutL protein interacts with the MutS-heteroduplex DNA complex in the presence of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号