首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The nuclear ribosomal ITS region and the chloroplast trnL-trnF (trnLF) intergenic region were sequenced for 45 accessions of Paranephelius and six accessions of Pseudonoseris, the two genera of the subtribe Paranepheliinae (Liabeae, Asteraceae) distributed in the alpine regions of the Andes. This data set was used to estimate relationships between these genera and within each genus to aid in evaluating morphological variation and classification. Our results with both ITS and trnLF markers support the monophyly of subtribe Paranepheliinae, and place Pseudonoseris discolor as the first diverged taxon sister to the clade containing Paranephelius. Pseudonoseris szyszylowiczii exhibited intraspecific divergence supporting intergeneric hybridization between Pseudonoseris and Paranephelius. Within Paranephelius, genetic divergence is low and not adequate to fully resolve phylogenetic relationships at the species level, but two genetically and morphologically recognizable groups were revealed by the ITS data. Several accessions possessing multiple ITS sequences represent putative hybrids between the two groups. These putative hybrids have caused some taxonomic confusion and difficulties in establishing species boundaries in Paranephelius. The divergence time estimates based on ITS sequences indicated that the stem of subtribe Paranepheliinae dates to 13 million years ago, but the diversification of the crown clade of the extant members began in the early Pleistocene or late Pliocene, perhaps associated with the uplift of the Andes and the climatic changes of global cooling.  相似文献   

2.
Extensive morphological convergence or divergence, a common occurrence in fungi, tends to obscure recognition of phylogenetic relationships among Pezizales, widespread filamentous Ascomycetes with either enclosed underground (hypogeous) or exposed (epigeous) fruit bodies, that often establish mutualistic interactions with arboreous plants. Focusing on hypogeous Pezizales commonly known as truffles, we sequenced the 18S rDNA from nine species belonging to three different families (Tuberaceae, Terfeziaceae, and Balsamiaceae). A data set consisting of 1700 secondary structure-aligned sites, including 24 homologous sequences from the GenBank DNA database and using three reconstruction methods, was employed to infer phylogenies in an interval ranging from the subordinal to the subgeneric level. As revealed by the 18S phylogenetic scheme, Balsamiaceae represent a monophyletic clade, comprising the hypogeous taxa Balsamia and Barssia, nested within Helvellaceae. Similarly, the terfeziacean genera Pachyphloeus and Terfezia constitute together with Cazia a distinct hypogeous clade nested within Pezizaceae. The lack of clustering between Terfezia arenaria and Terfezia terfezioides strongly supports the reassignment of the latter taxon to the original monotypic genus Mattirolomyces. Within Tuberaceae, which are sister to the highly evolved Helvellaceae, the genus Tuber cannot be considered monophyletic if Choiromyces is recognized. The paraphyly of Tuber and other relationships that were not supported by high bootstrap values, nor corroborated by morphological evidence, were supported by a parallel analysis of the faster evolving internal transcribed spacer (ITS) rDNA. Distinct episodes of fruit body morphology shifts are discernable in the 18S rDNA phylogenetic tree. In all cases, the shift from an epigeous to a hypogeous form is the most parsimonious interpretation of character transformation, without any instance of character reversal.  相似文献   

3.
Meve U  Liede S 《Annals of botany》2004,93(4):407-414
BACKGROUND AND AIMS: The number of genera included in Apocynaceae subfamily Periplocoideae is a matter of debate. DNA sequences are used here as an independent dataset to clarify generic relationships and classification of the tuberous periplocoid genera and to address the question of the phylogenetic interpretation of pollinia formation in Schlechterella. METHODS: Representatives of nearly all African and Malagasy genera of Periplocoideae possessing root tubers were analysed using ITS and plastid DNA sequence characters. RESULTS: Sequence data from non-coding molecular markers (ITS of nrDNA and the trnT-L and trnL-F spacers as well as the trnL intron of plastid DNA) give support for a broad taxonomic concept of Raphionacme including Pentagonanthus. Together with Schlechterella, which is sister to Raphionacme, all Raphionacme-like taxa form a derived monophyletic group of somewhat diverse species. Sister to the Schlechterella/Raphionacme clade is a clade comprising Stomatostemma and the not truly tuberous vine Mondia. In the combined analysis, sister to these two clades combined is a clade formed by Petopentia natalensis and Periploca. CONCLUSIONS: The recent inclusion of the monotypic South African Petopentia in the monotypic Malagasy endemic Ischnolepis is to be rejected. The Malagasy Camptocarpus is sister to the remainder of Periplocoideae in the ITS and combined analyses, and a Malagasy origin for the subfamily is discussed.  相似文献   

4.
Both chloroplast trnL (UAA) intron and nuclear ribosomal ITS sequences highly confirmed the monophyly of the tribes of the Gentianaceae defined by the recent classification, and revealed the tribe Exaceae as a basal clade just next to the basal-most lineage, the tribe Saccifolieae. Within the tribe Exaceae, Sebaea (except Sebaea madagascariensis) appeared as the most basal clade as the sister group to the rest of the tribe. The Madagascan endemic genera Gentianothamnus and Tachiadenus were very closely related to each other, together standing as sister to a clade comprising Sebaea madagascariensis, Ornichia, and Exacum. The saprophytic genus Cotylanthera nested deeply inside Exacum. Sebaea madagascariensis was shown closer to the Madagascan endemic genus Ornichia than to any other sampled Sebaea species. Exacum appeared as the most derived taxon within this tribe. The topology of the phylogenetic trees conform with the Gondwana vicariance hypothesis regarding the biogeography of Exaceae. However, no evidence for matching the older relationships within the family to the tectonic history could be corroborated with various divergence time analyses. Divergence dating estimated a post-Gondwana diverging of the Gentianaceae about 50 million years ago (MYA), and the tribe Exaceae as about 40 MYA. The Mozambique Channel land-bridge could have played an important role in the biogeographic history of the tribe Exaceae.  相似文献   

5.
Nucleotide sequences of the plastidmatK gene and nuclear rDNA internal transcribed spacer region were sampled fromAstragalus L. (Fabaceae), and its closest relatives within tribe Galegeae, to infer phylogenetic relationships and estimate ages of diversification. Consistent with previous studies that emphasized sampling for nrDNA ITS primarily within either New World or Old World species groups,Astragalus, with the exception of a few morphologically distinct species, is strongly supported as monophyletic based on maximum parsimony and Bayesian analyses ofmatK sequences as well as a combined sequence dataset. ThematK data provides better resolution and stronger clade support for relationships amongAstragalus and traditionally related genera than nrDNA ITS.Astragalus sensu stricto plus the genusOxytropis are strongly supported as sister to a clade composed of strictly Old World (African, Australasian) genera such asColutea. Sutherlandia, Lessertia, Swainsona, andCarmichaelia, plus several morphologically distinct segregates of EurasianAstragalus. Ages of these clades and rates of nucleotide substitution estimated from a fossil-constrained, rate-smoothed, Bayesian analysis ofmatK sequences sampled from Hologalegina indicateAstragalus diverged from its sister group,Oxtropis, 12–16 Ma, with divergence of Neo-Astragalus beginning ca 4.4. Ma. Estimates of absolute rates of nucleotide substitution forAstragalus and sister groups, which range from 8.9 to 10.2×10−10 substitutions per site per year, are not unusual when compared to those estimated for other, mainly temperate groups of papilionoid legumes. The results of previously published work and other recent developments on the phylogenetic relationships and diversification ofAstragalus are reviewed.  相似文献   

6.
Macaranga and Mallotus (Euphorbiaceae s.s.) are two closely related, large paleo(sub)tropical genera. To investigate the phylogenetic relationships between and within them and to determine the position of related genera belonging to the subtribe Rottlerinae, we sequenced one plastid (trnL-F) and three nuclear (ITS, ncpGS, phyC) markers for species representative of these genera. The analyses demonstrated the monophyly of Macaranga and the paraphyly of Mallotus and revealed three highly supported main clades. The genera Cordemoya and Deuteromallotus and the Mallotus sections Hancea and Oliganthae form a basal Cordemoya s.l. clade. The two other clades, the Macaranga clade and the Mallotus s.s. clade (the latter with Coccoceras, Neotrewia, Octospermum, and Trewia), are sister groups. In the Macaranga clade, two basal lineages (comprising mostly sect. Pseudorottlera) and a crown group with three geographically homogenous main clades were identified. The phylogeny of the Mallotus s.s. clade is less clear because of internal conflict in all four data sets. Many of the sections and informal infrageneric groups of Macaranga and Mallotus do not appear to be monophyletic. In both the Macaranga and Mallotus s.s. clades, the African and/or Madagascan taxa are nested in Asian clades, suggesting migrations or dispersals from Asia to Africa and Madagascar.  相似文献   

7.
The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.  相似文献   

8.
The current study represents phylogenetic analyses of Eremurus, Asphodelus and Asphodeline (Xanthorrhoeaceae-Asphodeloideae) using both plastids genome (trnL-F) and the nuclear ribosomal internal transcribed spacer (nrDNA ITS) sequence data. The analyses revealed that each of the investigated genera is monophyletic. Eremurus subgenus Eremurus is monophyletic, whereas the E. subgenus Henningia is paraphyletic. Trachyandra is the closest relative of Eremurus. Bulbinella and Kniphofia are subsequent sisters of Eremurus and Trachyandra. Aloe, Haworthia and Bulbine were nested in a single clade, sister to the last four genera. Asphodeline section Asphodeline appeared to be non-monophyletic, because of the inclusion of A. damascena. All species of Asphodelus analyzed herein, formed a well-supported clade that it is sister to the clade of Asphodeline species.  相似文献   

9.
Three powdery mildew species present on Nothofagus (viz. Erysiphe magellanica, E. nothofagi and E. patagoniaca) are endemic to South America and have unique ascomatal appendages that are not found in powdery mildews of the northern hemisphere. We determined the nucleotide sequences of the rDNA internal transcribed spacer regions and D1/D2 domains of the 28S rDNA of these three powdery mildew species to reveal their phylogenetic relationships with powdery mildews of the northern hemisphere. Although the molecular phylogenetic analyses indicated that the three Nothofagus powdery mildews are closely related to each other they did not group into one clade in either the ITS or 28S trees. Kishino-Hasegawa, Shimodaira-Hasegawa and Templeton tests could not significantly reject the constrained trees that were constructed based on the assumption that the Nothofagus powdery mildews would form a single clade. Based on this result and the evidence that all Nothofagus powdery mildews are endemic to South America and have similar morphological characteristics, it is likely that these three species diverged from a single ancestor present on Nothofagus. Calibration of evolutionary events with molecular clocks suggested that the Nothofagus powdery mildews split from the northern hemisphere relatives 22-16 million y ago (Ma) in the middle Miocene, and divergence among the Nothofagus powdery mildews occurred 17-13 Ma. These results do not support a southern hemisphere base of the Nothofagus powdery mildews.  相似文献   

10.
Ceropegia includes more than 200 species distributed in the Old World ranging from the Canary Islands to Australia. In India, there are about 50 species described on a morphological basis as belonging to Ceropegia, and most of them are endemic to the Western Ghats. To investigate evolutionary relationships among Indian Ceropegia taxa and their allies, a phylogenetic analysis was conducted to include 31 Indian taxa of Ceropegia and Brachystelma and their congeners from other geographical regions using nuclear ribosomal internal transcribed spacer (ITS) and three noncoding chloroplast DNA (cpDNA) sequences, including intergenic spacers trnT-L and trnL-F, and trnL intron. The Western Ghats Ceropegia species were found to be most closely related to Indian Brachystelma, with the two genera being placed sister to each other in the ITS phylogeny or with the Brachystelma clade nested within one of the two subclades of Indian Ceropegia in the cpDNA phylogeny. In contrast, Ceropegia species from other regions and African Brachystelma all formed separate clades basal to the Indian Ceropegia–Brachystelma clade. Thus, it can be concluded that the classical morphology-based delineation of the two genera needs revision to reflect their phylogenetic relationships, which are more in accordance with their geographical origin than with morphology.  相似文献   

11.
The internal transcribed spacer (ITS) region of the 18 S–25 S nuclear ribosomal DNA repeat was sequenced from 19 populations of the tribeLactuceae, including all species of dwarf dandelion (Krigia) and five outgroup genera. The incidence of length changes and base substitutions was at least two times higher for ITS 1 than ITS 2. Interspecific sequence divergence withinKrigia averaged 9.62% (1.61%–15.19%) and 4.26% (0%–6.64%) in ITS 1 and ITS 2, respectively. Intergeneric sequence divergence ranged from 15.6% to 44.5% in ITS 1 and from 8.0% to 28.6% in ITS 2. High sequence divergence and homoplasy among genera of tribeLactuceae suggest that the phylogenetic utility of ITS sequence data is limited to interspecific studies or comparisons among closely related genera. Trees generated from ITS sequences are essentially identical to those from restriction site comparisons of the entire nuclear ribosomal (nr) DNA region. The degree of tree resolution differed depending on how gaps were treated in phylogenetic analyses. The ITS trees were congruent with the chloroplast DNA and morphological phylogenies in three major ways: 1) the sister group relationship betweenKrigia andPyrrhopappus; 2) the recognition of two monophyletic sections,Krigia andCymbia, in genusKrigia; and 3) the monophyly of theK. occidentalis-K. cespitosa clade in sect.Cymbia. However, the two nrDNA-based trees are not congruent with morphology/chloroplast DNA-based trees for the interspecific relationships in sect.Krigia. An average of 22.5% incongruence was observed among fourKrigia data sets. The relatively high degree of incongruence among data sets is due primarily to conflict between trees based on nrDNA and morphological/cpDNA data. The incongruence is probably due to the concerted evolution of nrDNA repeating units. The results fromKrigia and theLactuceae suggest that nrDNA data may have limited utility in phylogenetic studies of plants, especially in groups which exhibit high levels of sequence divergence. Our combined phylogenetic analysis as a total evidence shows the least conflict to each of the individual data sets.  相似文献   

12.
It has been suggested that southern Africa is the origin of the predominantly herbaceous Apiaceae subfamily Apioideae and that the woody habit is plesiomorphic. We expand previous molecular phylogenetic analyses of the family by considering all but three of the approximately 38 genera native to southern Africa, including all genera whose members, save one, have a woody habit. Representatives of five other genera are included because they may be closely related to these southern African taxa. Chloroplast DNA rps16 intron and/or nuclear rDNA ITS sequences for 154 accessions are analyzed using maximum parsimony, Bayesian, and maximum likelihood methods. Within Apioideae, two major clades hitherto unrecognized in the subfamily are inferred. The monogeneric Lichtensteinia clade is sister group to all other members of the subfamily, whereas the Annesorhiza clade (Annesorhiza, Chamarea, and Itasina) plus Molopospermum (and Astydamia in the ITS trees) are the successive sister group to all Apioideae except Lichtensteinia. Tribe Heteromorpheae is expanded to include Pseudocarum, "Oreofraga" ined., and five genera endemic to Madagascar. The southern African origin of subfamily Apioideae is corroborated (with subsequent migration northward into Eurasia along two dispersal routes), and the positions of the herbaceous Lichtensteinia and Annesorhiza clades within the subfamily suggest, surprisingly, that its ancestor was herbaceous, not woody.  相似文献   

13.
The members of tribe Microlicieae in the flowering plant family Melastomataceae are nearly all endemic to the cerrado biome of Brazil. Traditional classifications of the Melastomataceae have attributed between 15 and 17 genera to the Microlicieae, but subsequent revisions have circumscribed the tribe more narrowly. The monophyly and intergeneric relationships of the Microlicieae were evaluated through phylogenetic analyses with molecular and morphological data sets. Incorporation of DNA sequences from the intron of the chloroplast gene rpl16 into a previously generated family-wide data set yielded a clade comprising Chaetostoma, Lavoisiera, Microlicia, Rhynchanthera, Stenodon, and Trembleya ("core Microlicieae"), with Rhynchanthera as the first-diverging lineage. The other four genera of Microlicieae sampled are placed in other clades: Eriocnema with Miconieae; Siphanthera with Aciotis, Nepsera, and Acisanthera of Melastomeae; Castratella as sister to Monochaetum of Melastomeae; and Cambessedesia as part of an unresolved polytomy in a large clade that includes most Melastomataceae. Analyses of the chloroplast genes rbcL and ndhF that included three core genera produced similar results, as did the combined analysis of all three data sets. Combined parsimony analyses of DNA sequences from rpl16 and the nuclear ribosomal intercistronic transcribed spacer (ITS) region of 22 species of core Microlicieae yielded generally low internal support values. Lavoisiera, recently redefined on the basis of several morphological characters, was strongly supported as monophyletic. A morphological phylogenetic analysis of the Microlicieae based on 10 parsimony-informative characters recovered a monophyletic core Microlicieae but provided no further resolution among genera. Penalized likelihood analysis with two calibration time windows produced an age estimate of 3.7 million years for the time of initial divergence of strictly Brazilian core Microlicieae. This date is in general agreement with the estimated age of the most active stage of development of cerrado vegetation and implies an adaptive shift from hydric to seasonally dry habitats during the early evolution of this group.  相似文献   

14.
Both chloroplast trnL (UAA) intron and nuclear ribosomal ITS sequences highly confirmed the monophyly of the tribes of the Gentianaceae defined by the recent classification, and revealed the tribe Exaceae as a basal clade just next to the basal-most lineage, the tribe Saccifolieae. Within the tribe Exaceae, Sebaea (except Sebaea madagascariensis) appeared as the most basal clade as the sister group to the rest of the tribe. The Madagascan endemic genera Gentianothamnus and Tachiadenus were very closely related to each other, together standing as sister to a clade comprising Sebaea madagascariensis, Ornichia, and Exacum. The saprophytic genus Cotylanthera nested deeply inside Exacum. Sebaea madagascariensis was shown closer to the Madagascan endemic genus Ornichia than to any other sampled Sebaea species. Exacum appeared as the most derived taxon within this tribe. The topology of the phylogenetic trees conform with the Gondwana vicariance hypothesis regarding the biogeography of Exaceae. However, no evidence for matching the older relationships within the family to the tectonic history could be corroborated with various divergence time analyses. Divergence dating estimated a post-Gondwana diverging of the Gentianaceae about 50 million years ago (MYA), and the tribe Exaceae as about 40 MYA. The Mozambique Channel land-bridge could have played an important role in the biogeographic history of the tribe Exaceae.  相似文献   

15.
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested.  相似文献   

16.
Crambe L. (Brassicaceae) is an Old World genus with a disjunct distribution among four major centers of species diversity. A phylogenetic analysis of nucleotide sequences of the internal transcribed spacers (ITS) of the nuclear ribosomal repeat was conducted with 27 species of Crambe and 18 related genera. Cladistic analyses using weighted and unweighted parsimony support Crambe as a monophyletic genus with three major lineages. The first comprises those taxa endemic to the Macaronesian archipelagos. Taxa with a predominant Mediterranean distribution form the second assemblage, and a disjunction between east Africa (C. abyssinica) and the Mediterranean (C. hispanica) occurs in this clade. The third lineage includes all Eurosiberian-Asian taxa and C. kilimandscharica, a species from the highlands of east Africa. A basal biogeographic split between east Africa and Eurasia is present in the third clade. The patterns of relationships in the ITS tree are concordant with known climatic events in northern Africa and southwestern Asia since the middle Miocene. The ITS trees are congruent with the current sectional classification except for a few members of sections Crambe, Leptocrambe, and Orientecrambe (C. cordifolia, C. endentula, C. kilimandscharica, and C. kotschyana). Low levels of support in the basal branches do not allow resolution of which genera of the subtribes Raphaniae or Brassicinae are sister to Crambe. Both subtribes appear to be highly polyphyletic in the ITS trees.  相似文献   

17.
In phylogenetic analyses of nuclear ITS and chloroplast trnL DNA sequences, the mostly endemic Australian genera; Halosarcia, Pachycornia, Sclerostegia, Tecticornia, and Tegicornia of the subfamily Salicornioideae (Chenopodiaceae) together form a monophyletic group, congruent with the hypothesis that they evolved from a common ancestor. However, limited genetic differentiation evident in both nrDNA and cpDNA sequences among these taxa suggests a possible rapid radiation. Based on fossil pollen records and climatic models of other authors, it is hypothesized that the expansion of the Australian endemic Salicornioideae most likely occurred during the Late Miocene to Pliocene, when increasing aridity caused the formation of extensive salt lakes along endorheic paleodrainage channels. Moreover, Australian Sarcocornia representatives were supported as monophyletic, nested within a paraphyletic Sarcocornia clade that also comprised European Salicornia in the ITS analysis. This suggests that Sarcocornia arrived in Australia subsequent to the ancestor of the Australian endemic genera most likely via long-distance dispersal.  相似文献   

18.
Scrophulariaceae is one of the families that has been divided extensively due to the results of DNA sequence studies. One of its segregates is a vastly enlarged Plantaginaceae. In a phylogenetic study of 47 members of Plantaginaceae and seven outgroups based on 3561 aligned characters from four DNA regions (the nuclear ribosomal ITS region and the plastid trnL-F, rps16 intron, and matK-trnK intron regions), the relationships within this clade were analyzed. The results from parsimony and Bayesian analyses support the removal of the Lindernieae from Gratioleae to a position outside Plantaginaceae. A group of mainly New World genera is paraphyletic with respect to a clade of Old World genera. Among the New World taxa, those offering oil as a pollinator reward cluster together. Ourisia is sister to this clade. Gratioleae consist of Gratiola, Otacanthus, Bacopa, Stemodia, Scoparia, and Mecardonia. Cheloneae plus Russelia and Tetranema together constitute the sister group to a clade predominantly composed of Old World taxa. Among the Old World clade, Ellisiophyllum and Lafuentea have been analyzed for the first time in a molecular phylogenetic analysis. The former genus is sister to Sibthorpia and the latter is surprisingly the sister to Antirrhineae.  相似文献   

19.
东南亚五加科包含14个属约500种,本文应用ITS片段对该区五加科植物的进化关系作了初步研究.研究显示该地区五加科植物具有复杂的起源,很多属属于亚洲掌状复叶类群或Hedereae族的一支中.该区特有类群Harmsiopanax形态上非常特殊,但其系统位置尚未不明朗.在Brassaiopsis属中,有几种形态差异较大的种,但它们属同一单系,加之各种问ITS序列差异较小,故应是新近起源于马来亚半岛和苏门达腊岛的种类.Wardenia simplex聚类在Brassaiopsis一支中,故不支持将Wardenia作为独立的属.东南亚地区对于Schefflera属的发育非常重要,已有的证据显示该区的Schefflera属植物属于该属的Heptapleumm类群.马来亚与泰国南部的Dendropanax lancifolius并没有与Dendropanax属的核心类群聚在一起,其系统地位需进一步研究.Macropanax maingayi是非常特殊的一个种,曾被独立分出,成立了单种属Hederopsis.本文的分析清楚表明它属于Macropanax属.Aralia merrillii因为其不同寻常的攀缘特性而被独立出来,建立了单种属Acanthophora,但ITS序列分析支持将它置于Aralia属中.新增的取样继续支持Arthrophyllum的单系性.Osmoxylon的原初分布范围在东南亚,它是五加科系统进化树上孤立的类群.  相似文献   

20.
The present paper concerns itself with three Composite genera of the tribe Cynareae (subtribe Carduinae), Vladimiria Ilj., Diplazoptilon Ling and Dolomiaea DC., all ranging throughout the Sino-himalayan region, These genera have in the past always been as sociated with the Eurasiatic genus Jurinea Cass., though there is hardly anything that can indicate such a relationship. Jurinea, according to the conception of Iljin, is a clearly deliminated natural genus, while the three genera now in question are all closely allied to Saussurea DC., being quite remote from Jurinea in the corolla forms, the structure of receptacle and pappus, and also in the morphology of pollen grains. Vladimiria was founded by Iljin, based on Jurinea salwinensis Hand.-Mzt. The genus is a close relative of Saussurea from which it differs chiefly in the usually many seriate pappus which are composed of scabrous or partly barbellulate bristles. As a re sult of our study, a tentative scheme of classification is here proposed, in which Iljin's original generic concept has been amplified to include a dozen of species previously re ferred to Jurinea by Franchet, Diels, Anthony and Handel-Mazzetti from the flora of south-western China and adjacent countries. Two sections, namely, sect. Sorocephalos Ling and sect. Vladimiria (Saussurea sect. Carduella Franch., Mazzettia Ilj.), are being proposed. Diplazoptilon, a new monotypic genus based upon Jurinea picridifolia Hand.-Mzt., is here proposed. It occupies an intermediate position between Vladimiria and Saussurea with a closer affinity to the former, from both of which it is, however, distinguished chiefly by the biseriate pappus with equal plumose bristles. Dolomiaea, a natural genus early founded by De Candolle on the basis of the Himalayan D. macrocephala DC., was considered by Bentham and Hooker f. as not different from Jurinea, a treatment having being followed since by most botanists of the past. But, as mentioned above, its relationship with Saussurea is obvious. It seems to differ from that genus in the two to many seriate pappus, consisting of numerous barbellulate bristles, and in the short style branches. In view of its affinity with Saussurea rather than with Jurinea, the generic status of Dolomiaea should be maintained accordingly. As construed above, the genus is now represented by about 5 species, most of which werepreviously referred to Jurinea by different botanists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号