首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
H-NS is a major component of the bacterial nucleoid, involved in condensing and packaging DNA and modulating gene expression. The mechanism by which this is achieved remains unclear. Genetic data show that the biological properties of H-NS are influenced by its oligomerization properties. We have applied a variety of biophysical techniques to study the structural basis of oligomerization of the H-NS protein from Salmonella typhimurium. The N-terminal 89 amino acids are responsible for oligomerization. The first 64 residues form a trimer dominated by an alpha-helix, likely to be in coiled-coil conformation. Extending this polypeptide to 89 amino acids generated higher order, heterodisperse oligomers. Similarly, in the full-length protein no single, defined oligomeric state is adopted. The C-terminal 48 residues do not participate in oligomerization and form a monomeric, DNA-binding domain. These N- and C-terminal domains are joined via a flexible linker which enables them to function independently within the context of the full-length protein. This novel mode of oligomerization may account for the unusual binding properties of H-NS.  相似文献   

5.
The H-NS protein plays a key role in condensing DNA and modulating gene expression in bacterial nucleoids. The mechanism by which this is achieved is dependent, at least in part, on the oligomerization of the protein. H-NS consists of two distinct domains; the N-terminal domain responsible for protein oligomerization, and the C-terminal DNA binding domain, which are separated by a flexible linker region. We present a multidimensional NMR study of the amino-terminal 64 residues of H-NS (denoted H-NS1-64) from Salmonella typhimurium, which constitute the oligomerization domain. This domain exists as a homotrimer, which is predicted to be self-associated through a coiled-coil configuration. NMR spectra show an equivalent magnetic environment for each monomer indicating that the polypeptide chains are arranged in parallel with complete 3-fold symmetry. Despite the limited resonance dispersion, an almost complete backbone assignment for 1H(N), 1H(alpha), 15N, 13CO and 13C(alpha) NMR resonances was obtained using a suite of triple resonance experiments applied to uniformly 15N-, 13C/15N- and 2H/13C/15N-labelled H-NS1-64 samples. The secondary structure of H-NS1-64 has been identified on the basis of the analysis of 1H(alpha), 13C(alpha), 13Cbeta and 13CO chemical shifts, NH/solvent exchange rates, intra-chain H(N)-H(N) and medium-range nuclear Overhauser enhancements (NOEs). Within the context of the homotrimer, each H-NS1-64 protomer consists of three alpha-helices spanning residues 2-8, 12-20 and 22-53, respectively. A topological model is presented for the symmetric H-NS1-64 trimer based upon the combined analysis of the helical elements and the pattern of backbone amide group 15N nuclear relaxation rates within the context of axially asymmetric diffusion tensor. In this model, the longest of the three helices (helix 3, residues 22-53) forms a coiled-coil interface with the other chains in the homotrimer. The two shorter N-terminal helices fold back onto the outer surface of the coiled-coil core and potentially act to stabilise this configuration.  相似文献   

6.
7.
The histone-like nucleoid structuring protein (H-NS) is a DNA-organizing protein in bacteria. It contains a DNA-binding domain and a dimerization domain, connected by a flexible linker region. Dimerization occurs through the formation of a helical bundle, including a coiled-coil interaction motif. Two conformations have been resolved, for different sequences of Escherichia coli H-NS, resulting in an antiparallel coiled-coil for the shorter wild-type sequence, and a parallel coiled-coil for the longer C21S mutant. Because H-NS functions as a thermo- and osmosensor, these conformations may both be functionally relevant. Molecular simulation can complement experiments by modeling the dynamical time evolution of biomolecular systems in atomistic detail. We performed a molecular-dynamics study of the H-NS dimerization domain, showing that the parallel complex is sensitive to changes in salt conditions: it is unstable in absence of NaCl, but stable at physiological salt concentrations. In contrast, the stability of the antiparallel complex is not salt-dependent. The stability of the parallel complex also appears to be affected by mutation of the critical but nonconserved cysteine residue at position 21, whereas the antiparallel complex is not. Together, our simulations suggest that osmoregulation could be mediated by changes in the ratio of parallel- and antiparallel-oriented H-NS dimers.  相似文献   

8.
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells.  相似文献   

9.
10.
11.
Enteropathogenic E. coli causes attaching and effacing (A/E) intestinal lesions. The genes involved in the formation of A/E lesions are encoded within a chromosomal island comprising of five major operons, LEE1-5. The global regulator H-NS represses the expression of these operons. Ler, a H-NS homologue, counteracts the H-NS–mediated repression. Using a novel genetic approach, we identified the amino acid residues in Ler that are involved in the interaction with H-NS: I20 and L23 in the C-terminal portion of α-helix 3, and I42 in the following unstructured linker region.  相似文献   

12.
13.
14.
Gene cloning in appropriate vectors followed by protein overexpression in Escherichia coli is the common means for protein purification. This approach has many advantages but also some drawbacks; one of these is that many proteins fail to achieve a soluble conformation when overexpressed in E. coli. Hha protein belongs to a family of nucleoid-associated proteins functionally related to the H-NS family of proteins. Hha-like proteins and H-NS-like proteins are able to semidirectly bind to each other. We show in this work that overexpressed Hha or HisHha protein (a functional derivative of Hha containing a 6x His tag at the amino end) from a T7-polymerase promoter in BL21 DE3 E. coli strains results in the vast majority of the protein accumulated in insoluble aggregates (inclusion bodies). We also show that tandem overexpression of HisHha and H-NS increases the solubility of HisHha and prevents the formation of inclusion bodies. Single amino acid substitutions in the HisHha protein, which impair interaction with H-NS, render insoluble protein even when tandem-expressed with H-NS, tandem expression of an insoluble protein and an interacting partner is an experimental strategy which could be useful to increase the solubility of other overexpressed proteins in E. coli.  相似文献   

15.
16.
17.
18.
19.
20.
The StpA protein is closely related to H-NS, the well-characterised global regulator of gene expression which is a major component of eubacterial chromatin. Despite sharing a very high degree of sequence identify and having biochemical properties in common with H-NS, the physiological function of StpA remains unknown. We show that StpA exhibits similar DNA-binding activities to H-NS. Although both display a strong preference for binding to curved DNA, StpA binds DNA with a four-fold higher affinity than H-NS, with K(d)s of 0.7 microM and 2.8 microM, respectively. It has previously been reported that expression of stpA is derepressed in an hns mutant. We have quantified the amount of StpA protein produced under this condition and find it to be only one-tenth the level of H-NS protein in wild-type cells. Our findings explain why the presence of StpA does not compensate for the lack of H-NS in an hns mutant, and why the characteristic pleiotropic hns mutant phenotype is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号