共查询到20条相似文献,搜索用时 0 毫秒
1.
Barbosa-Sicard E Markovic M Honeck H Christ B Muller DN Schunck WH 《Biochemical and biophysical research communications》2005,329(4):1275-1281
CYP2C enzymes epoxidize arachidonic acid (AA) to metabolites involved in the regulation of vascular and renal function. We tested the hypothesis that eicosapentaenoic acid (EPA), a n-3 polyunsaturated fatty acid, may serve as an alternative substrate. Human CYP2C8 and CYP2C9, as well as rat CYP2C11 and CYP2C23, were co-expressed with NADPH-CYP reductase in a baculovirus/insect cell system. The recombinant enzymes showed high EPA and AA epoxygenase activities and the catalytic efficiencies were almost equal comparing the two substrates. The 17,18-double bond was the preferred site of EPA epoxidation by CYPs 2C8, 2C11, and 2C23. 17(R),18(S)-Epoxyeicosatetraenoic acid was produced with an optical purity of about 70% by CYPs 2C9, 2C11, and 2C23 whereas CYP2C8 showed the opposite enantioselectivity. These results demonstrate that EPA is an efficient substrate of CYP2C enzymes and suggest that n-3 PUFA-rich diets may shift the CYP2C-dependent generation of physiologically active eicosanoids from AA- to EPA-derived metabolites. 相似文献
2.
Laura Fabrizi Simonetta Gemma Emanuela Testai Luciano Vittozzi 《Journal of biochemical and molecular toxicology》1999,13(1):53-61
The metabolism of diazinon, an organophosphorothionate pesticide, to diazoxon and pyrimidinol has been studied in incubations with hepatic microsomes from control Sprague–Dawley (SD) rats or SD rats treated with different P450‐specific inducers (phenobarbital, dexamethasone, β‐napthoflavone, and pyrazole). Results obtained indicate an involvement of CYP2C11, CYP3A2, and CYP2B1/2, whereas CYP2E1 and CYP1A1 do not contribute to the pesticide oxidative metabolism. Indeed, diazinon was metabolized by microsomes from control rats; among the inducers, phenobarbital and dexamethasone only increased the production of either metabolites, although to different extents. The production of the two metabolites is self‐limiting, due to P450 inactivation; therefore, the inhibition of CYP‐specific monooxygenase activities after diazinon preincubation has been used to selectively identify the competent CYPs in diazinon metabolism. Results indicate that, after diazinon preincubation, CYP3A2‐catalyzed reactions (2β‐ and 6β‐testosterone hydroxylation) are very efficiently inhibited; CYP2C11‐ and CYP2B1/2‐catalyzed reactions (2α‐ and 16β‐testosterone hydroxylation, respectively) are weakly inhibited, while CYP2E1‐, CYP2A1/2‐, and CYP1A1/2‐related activities were unaffected. Results obtained by using chemical inhibitors or antibodies selectively active against specific CYPs provide a direct evidence for the involvement of CYP2C11, CYP3A2, and CYP2B1/2, indicating that each of them contributed about 40–50% of the diazinon metabolism, in hepatic microsomes from untreated, phenobarbital‐, and dexamethasone‐treated rats, respectively. The higher diazoxon/pyrimidinol ratio observed after phenobarbital‐treatment together with the significantly more effective inhibition toward diazoxon production exerted by metyrapone in microsomes from phenobarbital‐treated rats supports the conclusion that CYP2B1/2 catalyze preferentially the production of diazoxon. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 53–61, 1999 相似文献
3.
The arachidonic acid metabolizing CYP enzymes with prominent roles in vascular regulation are epoxygenases of the two gene family which generate epoxyeicosatrienoic acids. Carriers of CYP2C9 mutant alleles exhibit a diminished CYP2C9 metabolic capacity leading to decreased endothelium-derived hyperpolarizing factors (EDHF) synthesis and an increased risk for atherosclerosis. We investigated whether the polymorphisms of CYP2C9/19 are related with atherosclerosis. We examined 108 patients having angioraphically > or =70 coronary artery narrowing and 90 healthy controls. CYPC2C9/19*2 and CYP2C9/19*3 alleles were investigated in both patients and controls by a real time PCR instrument. There was no significant difference in the distribution of the CYP2C9*2/*3 alleles between cases and the controls. We found that smoker patients having CYP2C9*2 heterozygote genotype have 3.7-fold risk of developing atherosclerosis. CYP2C19*3 heterozygote alleles are more frequent in patients than in controls (10.2%, 5.6% respectively) and it is related with a three-fold risk of atherosclerosis (odds ratio (OR) = 3.75, confidence interval (CI) = 0.75-18.65). It becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. This inter-subject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification processes, e.g., cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development such as atherosclerosis. 相似文献
4.
目的研究慢性乙型肝炎青年男性患者的勃起功能及性激素水平,探讨二者之间可能的关系。方法共有61例慢性乙型肝炎青年男性患者入选,其中轻度18例,中度22例,重度21例,20例健康男性志愿者作为对照,比较其国际勃起功能5项指数(IIEF-5)量表得分及睾酮、雌二醇和促泌乳素水平。结果慢性乙型肝炎青年男性患者均有不同程度的勃起功能障碍,明显高于正常对照组(P0.001),重度患者与轻中度患者比较IIEF-5评分较低,均数比较差异有显著性(P0.001~0.027),雌二醇/睾酮比值在4组间比较,差异无显著性(F=1.99,P=0.120),所有肝炎患者睾酮、雌二醇水平均较正常对照组升高(P0.01),中重度患者的促泌乳素水平较正常对照组高(P0.001)。结论慢性乙型肝炎青年男性患者的国际勃起功能指数明显降低,勃起功能障碍发生率明显升高,其机制可能与雌二醇及促泌乳素升高有关。 相似文献
5.
CYP2C19遗传多态性的研究进展 总被引:10,自引:0,他引:10
S-美芬妥英羟化代谢多态性不仅存在个体差异,而且存在种族差异。CYP2C19基因是决定S-美芬妥英羟化代谢的决定基因,该基因的突变是导致S-美芬妥英羟化代谢多态性的分子机制。近年来对CYN50s基因型和表型相关性的研究越来越受到重视,人们希望利用基因型分析来了解个体中该药物代谢酶的活性,期望既能提高药物治疗水平同时又降低不良反应的发生。有关CYP2C19的研究在此方面已树立了一个成功的典范。 相似文献
6.
Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms 总被引:9,自引:0,他引:9
Yasar U Lundgren S Eliasson E Bennet A Wiman B de Faire U Rane A 《Biochemical and biophysical research communications》2002,299(1):25-28
Cytochrome P450 (CYP) 2C8 and 2C9 are polymorphic enzymes. The CYP2C8*3 and CYP2C9*2 are the major variant alleles in Caucasian populations. The enzymes encoded by these variant alleles have impaired function for the metabolism of several drug substrates. In the present study 1468 subjects that were used as population-based controls in the Stockholm Heart Epidemiology Program (SHEEP) were genotyped by allelic discrimination using a 5'-nuclease assay for CYP2C8*1, 2C8*3, 2C9*1, 2C9*2, and 2C9*3 variant alleles in which the frequencies appeared to be 0.91, 0.095, 0.83, 0.11, and 0.066, respectively. Approximately, 96% of the subjects with CYP2C8*3 allele also carried a CYP2C9*2 and 85% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. The number of subjects carrying both of the CYP2C8*1*3 and CYP2C9*1*2 was 4.5-fold higher than expected. This strong association may be of importance especially for the metabolism of common substrates of CYP2C8 and CYP2C9 like arachidonic acid that produces physiologically active metabolites. 相似文献
7.
David F.V. Lewis Brian G. Lake Yuko Ito Maurice Dickins 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):385-389
Quantitative structure-activity relationships (QSARs) within a series of cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) inhibitors are reported. In particular, it is noted that compound lipophilicity, in the form of log P values (where P is the octanol/water partition coefficient), is an important factor in explaining the variation in inhibitory potency within these series of compounds, many of which also act as substrates for the respective enzymes. In addition, there is a role for hydrogen bonding and π-π stacking interactions within the P450 active site which represent secondary factors in the binding processes of these compounds. 相似文献
8.
Okamoto M Nonaka Y Takemori H Doi J 《Biochemical and biophysical research communications》2005,338(1):325-330
11Beta-hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11beta-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolated from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression. 相似文献
9.
Nolin TD Frye RF 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,783(1):265-271
A sensitive, specific and reproducible gas chromatographic assay utilizing mass-selective detection has been developed for the stereoselective determination of mephenytoin (MP) in human urine. Following extraction of urine samples using methyl tert.-butyl ether, separation of R- and S-MP was achieved with a chiral capillary column; detection and quantitation were accomplished by mass spectrometry in the single ion monitoring mode (m/z 104 and 189). Excellent linearity was observed for both enantiomers over the concentration range of 5-1000 ng/ml with corresponding correlation coefficients (r)>0.99. The intra- and inter-day precision and accuracy were within +/-5%. This method employs a simplified processing procedure, demonstrates improved extraction recovery, and provides at least 5-fold greater sensitivity than previously reported assays. This method is well suited for the phenotypic evaluation of CYP2C19 activity using mephenytoin. 相似文献
10.
Kawahigashi H Hirose S Ozawa K Ido Y Kojima M Ohkawa H Ohkawa Y 《Transgenic research》2005,14(6):907-917
We introduced two novel types of pig (Sus scrofa) cytochrome P450, CYP2B22 and CYP2C49, into rice plants (Oryza sativa L. cv. ‘Nipponbare’) to produce herbicide-tolerant plants and to confirm the metabolic activities of the cytochrome P450
species. In germination tests, both types of transgenic plants showed tolerance to various herbicides with different modes
of action. CYP2B22 rice plants showed tolerance towards 12 herbicides including chlortoluron (100 μM), amiprofos-methyl (2.5 μM),
pendimethalin (10 μM), metolachlor (2.5 μM), and esprocarb (20 μM). CYP2C49 rice plants showed tolerance towards 13 herbicides,
including chlortoluron (100 μM), norflurazon (0.5 μM), amiprofos-methyl (2.5 μM), alachlor (0.8 μM), and isoxaben (1 μM).
The herbicide tolerance was considered to reflect the substrate specificity of the introduced P450 species. We used 14C-labeled metolachlor and norflurazon to confirm the P450 activity in the transgenic rice plants. The herbicides were metabolized
more quickly in the transgenic rice plants than in the nontransgenic rice plants. Therefore, CYP2B22 and CYP2C49 rice plants
became more tolerant to various herbicides than nontransgenic control plants because of accelerated metabolism of the herbicides
by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, these transgenic rice plants
may become useful tools for the breeding of herbicide-tolerant crops. 相似文献
11.
Sources of estrogen and their importance 总被引:14,自引:0,他引:14
Simpson ER 《The Journal of steroid biochemistry and molecular biology》2003,86(3-5):225-230
12.
13.
Huan-Chen Li Chitra Mani David Kupfer 《Journal of biochemical and molecular toxicology》1993,8(4):195-206
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*. 相似文献
14.
The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-β-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases.In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms. Compound 3 proved to be very potent and selective towards CYP11B1, and was thus selected for further optimization via appropriate decoration of the scaffold, leading to new potent 4′-substituted derivatives. In this second series, 4 and 8, carrying a methoxy group and a phenyl ring, respectively, proved to be low-nanomolar inhibitors of CYP11B1, despite a slight decrease in selectivity against CYP11B2. Moreover, unlike the benzophenones of the first series, the 4′-substituted derivatives also proved to be selective for CYP11B enzymes, showing very weak inhibition of CYP19 and CYP17.Notably, the promising result of a preliminary scratch test performed on compound 8 confirmed the potential of this compound as a wound-healing promoter. 相似文献
15.
16.
Masatomo Miura Satoru Motoyama Yudai Hinai Takenori Niioka Makoto Hayakari Jun‐Ichi Ogawa Toshio Suzuki 《Chirality》2010,22(7):635-640
The purpose of this study was to investigate whether CYP2C19 activity can be estimated from plasma concentrations of lansoprazole enantiomers 4 h (C4h) after single administration by oral and enteral routes. Sixty‐nine subjects, 22 homozygous extensive metabolizers (homEMs), 32 heterozygous EMs (hetEMs), and 15 poor metabolizers (PMs), participated in the study. After a single oral or enteral dose of racemic lansoprazole (30 mg), plasma concentrations of lansoprazole enantiomers were measured 4 h postdose. The R/S ratio of lansoprazole at 4 h differed significantly among the three groups (P < 0.0001) regardless of the administration route. The R/S ratio of lansoprazole in CYP2C19 PMs ranged from 3.0 to 13.7, whereas in homEMs and hetEMs the ratio ranged from 8.6 to 90 and 2.1 to 122, respectively. The relationship between (S)‐lansoprazole concentration and R/S ratio of lansoprazole at C4h is given by the following formula: log10 [R/S ratio] = 2.2 – 0.64 × log10 [C4h of (S)‐lansoprazole] (r = 0.867, P < 0.0001). Thus, phenotyping CYP2C19 using the R/S enantiomer ratio of lansoprazole seems unlikely. However, to obtain a pharmacological effect similar to that in CYP2C19 PMs, we can presume that lansoprazole has a sufficient effect in the patient with an R/S enantiomer ratio at 4 h ≤ 13.70 and (S)‐lansoprazole concentration at 4 h ≥ 50 ng/ml. Chirality 2010. © 2009 Wiley‐Liss, Inc. 相似文献
17.
Uno Y Hosaka S Matsuno K Nakamura C Kito G Kamataki T Nagata R 《Archives of biochemistry and biophysics》2007,466(1):98-105
Cynomolgus monkey CYP2C76 does not have a corresponding ortholog in humans, and it is at least partly responsible for differences in drug metabolism between monkeys and humans. To determine if CYP2C76 is the only monkey-specific CYP gene, we identified cynomolgus monkey cDNAs for CYP2A23, CYP2A24, CYP2E1, CYP2J2, CYP3A5, CYP3A8, CYP4A11, CYP4F3, CYP4F11, CYP4F12, and CYP4F45. These CYP cDNAs showed a high sequence identity (93-96%) to the homologous human CYP cDNAs. The monkey CYPs were preferentially expressed in liver among the analyzed tissues. Moreover, all five analyzed monkey CYPs (CYP2A23, CYP2A24, CYP2E1, CYP3A5, and CYP3A8) metabolized typical substrates for human CYPs in the corresponding subfamilies. These results suggest that these 11 monkey CYP cDNAs are closely related to the human CYP cDNAs and thus, unlike CYP2C76, are not apparent monkey-specific cDNAs. 相似文献
18.
G. E. Demas R. J. Nelson 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1998,168(6):419-426
The effects of photoperiod and steroid hormones on immune function were assessed in male and female deer mice (Peromyscus maniculatus). In experiment 1, male deer mice were castrated, castrated and given testosterone replacement, or sham-operated. Half of each experimental group were subsequently housed in either long (LD 16:8) or short days (LD 8:16) for 10 weeks. Short-day deer mice underwent reproductive regression and displayed elevated lymphocyte proliferation in response to the T-cell mitogen concanavalin A, as compared to long-day mice. In experiment 2, female deer mice were ovariectomized, ovariectomized and given estrogen replacement, or sham-operated. Animals from each of these experimental groups were subsequently housed in either LD 16:8 or LD 8:16 for 10 weeks. Short-day deer mice underwent reproductive regression and displayed reduced serum estradiol concentrations and elevated lymphocyte proliferation in response to concanavalin A, as compared to long-day mice. Surgical manipulation had no effect on lymphocyte proliferation in either male or female deer mice. Neither photoperiod nor surgical manipulation affected serum corticosterone concentrations. These results confirm that both male and female deer mice housed in short days enhance immune function relative to long-day animals. Additionally, short-day elevation in splenocyte proliferation appears to be independent of the influence of steroid hormones in this species. Accepted: 17 April 1998 相似文献
19.
Wenjie Jessie Lu Valentina Ferlito Cong Xu David Alastair Flockhart Salvatore Caccamese 《Chirality》2011,23(10):891-896
Interactions between naringenin and the cytochrome P450 (CYP) system have been of interest since the first demonstration that grapefruit juice reduced CYP3A activity. The effects of naringenin on other CYP isoforms have been less investigated. In addition, it is well known that interactions with enzymes are often stereospecific, but due to the lack of readily available pure naringenin enantiomers, the enantioselectivity of its effects has not been characterized. We isolated pure naringenin enantiomers by chiral high‐performance liquid chromatography and tested the ability of (R)‐,(S)‐ and rac‐naringenin to inhibit several important drug‐metabolizing CYP isoforms using recombinant enzymes and pooled human liver microsomes. Naringenin was able to inhibit CYP19, CYP2C9, and CYP2C19 with IC50 values below 5 μM. No appreciable inhibition of CYP2B6 or CYP2D6 was observed at concentrations up to 10 μM. Whereas (S)‐naringenin was 2‐fold more potent as an inhibitor of CYP19 and CYP2C19 than (R)‐naringenin, (R)‐naringenin was 2‐fold more potent for CYP2C9 and CYP3A. Chiral flavanones like naringenin are difficult to separate into their enantiomeric forms, but enantioselective effects may be observed that ultimately impact clinical effects. Inhibition of specific drug metabolizing enzymes by naringenin observed in vitro may be exploited to understand pharmacokinetic changes seen in vivo. Chirality, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
20.
Suzuki H Kneller MB Rock DA Jones JP Trager WF Rettie AE 《Archives of biochemistry and biophysics》2004,429(1):1-15
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19. 相似文献