共查询到20条相似文献,搜索用时 0 毫秒
1.
Tropical Nepenthes pitcher plants provide small, isolated aquatic habitats. We examined inter-pitcher variation in the community structure of the inhabitants of Nepenthes alata Blanco in West Sumatra, focusing on the conditions of the pitchers, bacterial density in the pitcher fluid, density and biomass of metazoan inhabitants, and the frequencies of interspecific encounters. Older pitchers contained more insect carcasses. The bacterial density increased with the age of the pitchers, but decreased in withered pitchers that contained finely decomposed detritus. In live pitchers, the bacterial density, the density, mass and species richness of metazoa, and the number of trophic levels per pitcher were positively correlated with detrital mass, which was correlated with volume of pitcher fluid. The metazoan fauna from N. alata consisted of 4 predators and 12 saprophages, among the richest known for Nepenthes species. However, each individual pitcher harbored a limited numbers of species, owing to (1) the low incidence of many species, and (2) the aggregated distribution and different temporal colonization pattern of major species. Six dipteran taxa (one predator and five saprophages) accounted for the bulk of metazoan inhabitant biomass. Of 48 combinations of predator-prey encountered, only four occurred frequently (in > 30% of pitchers), which included two predators and three saprophages. Thus, individual pitchers harbored relatively simple communities despite the regional species richness, and only limited kinds of predator-prey encounters seemed to occur frequently in the regional food web. The local-scale properties of the subdivided communities presented here provide the basic information for understanding the maintenance of regional species richness and food web complexity. 相似文献
2.
3.
Sandy Rottloff Axel Mith?fer Ute Müller Roland Kilper 《Journal of visualized experiments : JoVE》2013,(82)
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores.Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands.In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA. 相似文献
4.
We collected ~29 kb of sequence data using Roche 454 pyrosequencing in order to estimate the timing and pattern of diversification in the carnivorous pitcher plant Sarracenia alata. Utilizing modified protocols for reduced representation library construction, we generated sequence data from 86 individuals across 10 populations from throughout the range of the species. We identified 76 high-quality and high-coverage loci (containing over 500 SNPs) using the bioinformatics pipeline PRGmatic. Results from a Bayesian clustering analysis indicate that populations are highly structured, and are similar in pattern to the topology of a population tree estimated using *BEAST. The pattern of diversification within Sarracenia alata implies that riverine barriers are the primary factor promoting population diversification, with divergence across the Mississippi River occurring more than 60,000 generations before present. Further, significant patterns of niche divergence and the identification of several outlier loci suggest that selection may contribute to population divergence. Our results demonstrate the feasibility of using next-generation sequencing to investigate intraspecific genetic variation in nonmodel species. 相似文献
5.
BACKGROUND AND AIMS: Pitcher plants Nepenthes alata and N. mirabilis are carnivorous species with leaves composed of a photosynthetic part (lamina) and a pitcher trap. This characteristic permitted direct physiological and anatomical comparison between these two distinct parts of the leaves to determine those features involved in the 'carnivorous syndrome', which include low net photosynthetic assimilation rate (A(N)) and low photosynthetic nitrogen use efficiency (PNUE). METHODS: Photosynthetic rate (A(N)) and respiration rate (R(d)) were measured gasometrically, chlorophyll concentration was determined spectrophotometrically and nitrogen concentration was determined using a CHN elemental analyser in lamina and trap separately. Anatomy of N. alata was observed using light, fluorescence and transmission electron microscopy. A(N), foliar nitrogen and chlorophyll concentration were also compared with values for other carnivorous plant species (genera Sarracenia, Drosera) that combine both autotrophic and carnivorous functions into the same physical organ. KEY RESULTS: It was found that the A(N) in Nepenthes lamina was low and PNUE was only slightly higher or similar in comparison with other carnivorous plants. It was not observed that the pitcher had a higher R(d) than the lamina, but A(N) in the pitcher was significantly lower than in the lamina. Nepenthes possesses a cluster of characters that could result in reduced photosynthesis in the pitcher and be responsible for carnivorous function of the leaf: replacement of chlorophyll-containing cells with digestive glands, low chlorophyll and nitrogen concentration, compact mesophyll with a small portion of intercellular spaces, absence of palisade parenchyma and low stomatal density. CONCLUSION: Low photosynthetic capacity, nitrogen efficiency, chlorophyll and nitrogen concentration of Nepenthes pitchers was found, together with a set of features that characterized the carnivorous syndrome. Dual use of leaves for photosynthesis and nutrient gain can decrease photosynthetic efficiency in carnivorous plants in general. 相似文献
6.
7.
The pitcher of the carnivorous plant Sarracenia purpurea L.contains an entrapped body of liquid within which its prey isdigested. Free calcium in the pitcher is derived from eitherthe pitcher walls or from prey falling into the pitcher; inthe absence of exogenous (prey-derived) calcium it will dependon the active and passive calcium regulatory properties of thepitcher walls and may to some extent therefore mimic calciumin the apoplast of plant cells. Using a calcium-specific electrode,the free calcium concentration of the pitchers of Sarraceniaplants was investigated and the effect of adding a variety ofconcentrations of calcium in water determined. The mean pitcherfree calcium concentration in vivo was 2.3 x 105 M±2.5x 105 M; when pitchers were washed and filled with watercontaining lower calcium concentrations, the concentration inthe pitcher water rose to 15 x 105 M. When highercalcium concentrations (up to 1 x 104 M) were added,the pitcher calcium concentration declined to 17 x 105M. Concentrations of calcium above 1 x 104 M were alsoreduced, but to a lesser extent. Metabolic inhibition of activeion transport, while inhibiting pitcher acidification, did notinhibit regulation of pitcher free calcium, suggested that itoccurs as a result of calcium exchange sites in the pitcherwalls. The data are discussed in relation to the physiologyof Sarracenia pitchers and to the usefulness of the pitcheras a model for free calcium in the higher plant apoplast. Sarracenia purpurea L., carnivorous plant, pitcher, free calcium, plant apoplast 相似文献
8.
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. 相似文献
9.
The genus Nepenthes comprises carnivorous plants that digest insects in pitcher fluid to supplement their nitrogen uptake. In a recent study, two acid proteinases (nepenthesins I and II) were purified from the pitcher fluid. However, no other enzymes involved in prey digestion have been identified, although several enzyme activities have been reported. To identify all the proteins involved, we performed a proteomic analysis of Nepenthes pitcher fluid. The secreted proteins in pitcher fluid were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and several protein bands were detected by silver staining. The proteins were identified by in-gel tryptic digestion, de novo peptide sequencing, and homology searches against public databases. The proteins included homologues of beta-D-xylosidase, beta-1,3-glucanase, chitinase, and thaumatin-like protein, most of which are designated "pathogenesis-related proteins". These proteins presumably inhibit bacterial growth in the pitcher fluid to ensure sufficient nutrients for Nepenthes growth. 相似文献
10.
11.
12.
Carnivorous plants acquire substantial amounts of nitrogen from insects. The tropical carnivorous plant Nepenthes produces trapping organs called pitchers at the tips of tendrils elongated from leaf ends. Acidic fluid is secreted at the bottoms of the pitchers. The pitcher fluid includes several hydrolytic enzymes, and some, such as aspartic proteinase, are thought to be involved in nitrogen acquisition from insect proteins. To understand the nitrogen-acquisition process, it is essential to identify the protein-degradation products in the pitcher fluid. To gain insight into protein degradation in pitcher fluid, we used the oxidized B-chain of bovine insulin as a model substrate, and its degradation by the pitcher fluid of N. alata was investigated using liquid chromatography-mass spectrometry (LC-MS). LC-MS analysis of the degradation products revealed that the oxidized B-chain of bovine insulin was initially cleaved at aromatic amino acids such as phenylalanine and tyrosine. These cleavage sites are similar to those of aspartic proteinases from other plants and animals. The presence of a series of peptide fragments as degradation products suggests that exopeptidase(s) is also present in the pitcher fluid. Amino acid analysis and peptide fragment analysis of the degradation products demonstrated that three amino acids plus small peptides were released from the oxidized B-chain of bovine insulin, suggesting that insect proteins are readily degraded to small peptides and amino acids in the pitcher fluid of N. alata. 相似文献
13.
14.
Plasma-membrane H+-ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco
Nepenthes is a unique genus of carnivorous plants that can capture insects in trapping organs called pitchers and digest them in pitcher
fluid. The pitcher fluid includes digestive enzymes and is strongly acidic. We found that the fluid pH decreased when prey
accumulates in the pitcher fluid of Nepenthes alata. The pH decrease may be important for prey digestion and the absorption of prey-derived nutrients. To identify the proton
pump involved in the acidification of pitcher fluid, plant proton-pump homologs were cloned and their expressions were examined.
In the lower part of pitchers with natural prey, expression of one putative plasma-membrane (PM) H+-ATPase gene, NaPHA3, was considerably higher than that of the putative vacuolar H+-ATPase (subunit A) gene, NaVHA1, or the putative vacuolar H+-pyrophosphatase gene, NaVHP1. Expression of one PM H+-ATPase gene, NaPHA1, was detected in the head cells of digestive glands in the lower part of pitchers, where proton extrusion may occur. Involvement
of the PM H+-ATPase in the acidification of pitcher fluid was also supported by experiments with proton-pump modulators; vanadate inhibited
proton extrusion from the inner surface of pitchers, whereas bafilomycin A1 did not, and fusicoccin induced proton extrusion. These results strongly suggest that the PM H+-ATPase is responsible for acidification of the pitcher fluid of Nepenthes.
Received: 8 June 2000 / Accepted: 8 August 2000 相似文献
15.
Simon Poppinga Siegfried Richard Heinrich Hartmeyer Robin Seidel Tom Masselter Irmgard Hartmeyer Thomas Speck 《PloS one》2012,7(9)
Among trapping mechanisms in carnivorous plants, those termed ‘active’ have especially fascinated scientists since Charles Darwin’s early works because trap movements are involved. Fast snap-trapping and suction of prey are two of the most spectacular examples for how these plants actively catch animals, mainly arthropods, for a substantial nutrient supply. We show that Drosera glanduligera, a sundew from southern Australia, features a sophisticated catapult mechanism: Prey animals walking near the edge of the sundew trigger a touch-sensitive snap-tentacle, which swiftly catapults them onto adjacent sticky glue-tentacles; the insects are then slowly drawn within the concave trap leaf by sticky tentacles. This is the first detailed documentation and analysis of such catapult-flypaper traps in action and highlights a unique and surprisingly complex mechanical adaptation to carnivory. 相似文献
16.
Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention. 相似文献
17.
In the course of studies to typify what has been regarded as the most widespread and common of the endemic Philippines species of Nepenthes, N. alata Blanco, we were able to review the morphological variation in what we previously regarded as a polymorphic species. This led us to redelimit that species in a narrower sense, to resurrect N. graciliflora Elmer, and to recognise N. negros sp. nov., here assessed as ‘Critically Endangered’ (CR) using the IUCN standard. The Nepenthes alata group is characterised and a key to its species is provided. 相似文献
18.
Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata 总被引:1,自引:0,他引:1
A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates. 相似文献
19.
The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. 相似文献
20.
The transport of potassium, calcium, water, and carbohydratesfrom a potato tuber to a developing sprout has been followedover an 8-week period. From the resulting balance-sheet calculationshave been made of the concentration of ions in the xylem andphloem saps entering the sprout. Similarly, the concentrationof carbohydrates in the phloem has been calculated. Predictedionic concentrations in the xylem have been confirmed from analysesof xylem exudate. The pattern of results thus obtained indicatesthe presence of a circulatory system necessitating bidirectionaltransport within the phloem. The results obtained are thereforeinconsistent with the hypothesis that a mass flow of solutesis the mechanism of translocation within the phloem 相似文献