首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In natural host populations, parasitism is considered to be omnipresent and to play an important role in shaping host life history and population dynamics. Here, we study parasitism in natural populations of the zooplankton host Daphnia magna investigating their individual and population level effects during a 2-year field study. Our results revealed a rich and highly prevalent community of parasites, with eight endoparasite species (four microsporidia, one amoeba, two bacteria and one nematode) and six epibionts (belonging to five different taxa: Chlorophyta, Bacillariophyceae, Ciliata, Fungi and Rotifera). Several of the endoparasites were associated with a severe overall fecundity reduction of the hosts, while such effects were not seen for epibionts. In particular, infections by Pasteuria ramosa, White Fat Cell Disease and Flabelliforma magnivora were strongly associated with a reduction in overall D. magna fecundity. Across the sampling period, average population fecundity of D. magna was negatively associated with overall infection intensity and total endoparasite richness. Population density of D. magna was negatively correlated to overall endoparasite prevalence and positively correlated with epibiont richness. Finally, the reduction in host fecundity caused by different parasite species was negatively correlated to both parasite prevalence and the length of the time period during which the parasite persisted in the host population. Consistent with epidemiological models, these results indicate that parasite mediated host damages influence the population dynamics of both hosts and parasites.  相似文献   

2.
Recent work has suggested that the outcomes of host–symbiont interactions can shift between positive, neutral and negative depending on both biotic and abiotic conditions. Even organisms traditionally defined as parasites can have positive effects on hosts under some conditions. For a given host–parasite system, the effects of infection on host fitness can depend on host vigour, route of transmission and environmental conditions. We monitored sublethal microsporidian infections in populations of Gammarus pseudolimnaeus (Amphipoda: Gammaridae) from four cool water streams in southwestern Michigan, USA. Our objectives were to: (i) infer the mechanism of transmission (horizontal, vertical or mixed) from observed effects of infection on host fitness, (ii) determine if the magnitude of the effects on host fitness is a function of parasite load (infection intensity) compared with simple presence or absence of infection, and (iii) determine if there is variation in parasite effects on host fitness in isolated populations. PCR and DNA sequence analyses revealed that there were two microsporidia present among the four host populations: Dictyocoela sp. and Microsporidium sp. PCR screening of a subset of infected hosts showed that Dictyocoela sp. accounted for 90% of infections and was present in all four G. pseudolimnaeus populations, while Microsporidium sp. was found in two populations but was only relatively common in one. We found very low prevalence in males (∼5%), but high prevalence in females (range: 37–85%). Female fitness was positively associated with infection in two streams, resulting from either higher fecundity or more reproductive bouts. Infection had a negative effect on the number of reproductive bouts in a third population, and no effect on fecundity in a fourth population. Infection intensity explained additional variation in fecundity in one population; females with intermediate infection intensity had higher fecundity than females with either light or heavy infection intensity. Given the high prevalence of infection in females compared with males and the generally weak negative fitness effects coupled with some positive fitness effects, it is likely that both Dictyocoela sp. and Microsporidium sp. are primarily vertically transmitted, feminizing microsporidia. Our results suggest that microsporidian effects on G. pseudolimnaeus fitness were context-dependent and varied with host sex and local environment.  相似文献   

3.
Parasitism may be an important factor determining the geographic distribution of closely related species. A habitat-specific risk of parasitism may lead to exclusion of susceptible host types from parasite-rich environments, and promote speciation if it leads to reproductive isolation between susceptible and resistant types. We surveyed populations of the freshwater snail Lymnaea peregra for differences in habitat distribution and trematode parasitism between its two distinct shell morphs, L. ovata and L. peregra. We surveyed 58 populations (43 L. ovata, 15 L. peregra). At each location we recorded an array of habitat characteristics that were summarized using a nonlinear principal components analysis. This yielded two orthogonal habitat score variables. Discriminant analysis with these habitat dimensions indicated that the snail morphs differed in their habitat distribution. L. ovata preferred larger, more permanent natural habitats surrounded by forests, while L. peregra was found more often at a higher altitude, in nonpermanent habitats, often surrounded by meadows. The snails were parasitized by four cercarial types of castrating trematodes. The morphs had a similar prevalence of infection by each of the parasite types, with one exception: monostomid cercariae were found at a higher prevalence in L. ovata than in L. peregra. However, monostomes were rare parasites, and the difference in prevalence of infection was not significant when only populations with monostomes were compared. Our results indicate that variation in the overall prevalence of infection seems to be independent of snail morph, and do not support the idea that a difference in the rate of parasitism might explain differences in the habitat distribution of these snail morphs. Received: 4 January 1999 / Accepted: 30 June 1999  相似文献   

4.
Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life‐history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life‐history parameters in unstressed and drought‐stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought‐stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought‐stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite.  相似文献   

5.
A basic assumption underlying models of host-parasite coevolution is the existence of additive genetic variation among hosts for resistance to parasites. However, estimates of additive genetic variation are lacking for natural populations of invertebrates. Testing this assumption is especially important in view of current models that suggest parasites may be responsible for the evolution of sex, such as the Red Queen hypothesis. This hypothesis suggests that the twofold reproductive disadvantage of sex relative to parthenogenesis can be overcome by the more rapid production of rare genotypes resistant to parasites. Here I present evidence of significant levels of additive genetic variance in parasite resistance for an invertebrate host-parasite system in nature. Using families of the bivalve mollusc, Transennella tantilla, cultured in the laboratory, then exposed to parasites in the field, I quantified heritable variation in parasite resistance under natural conditions. The spatial distribution of outplanted hosts was also varied to determine environmental contributions to levels of parasite infection and to estimate potential interactions of host genotype with environment. The results show moderate but significant levels of heritability for resistance to parasites (h2 = 0.36). The spatial distribution of hosts also significantly influenced parasite prevalence such that increased host aggregation resulted in decreased levels of parasite infection. Family mean correlations across environments were positive, indicating no genotype-environment interaction. Therefore, these results provide support for important assumptions underlying coevolutionary models of host-parasite systems.  相似文献   

6.
We investigated the role of host sex in parasite transmission and questioned: ‘Is host sex important in influencing the dynamics of infection in free living animal populations?’ We experimentally reduced the helminth community of either males or females in a yellow‐necked mice (Apodemus flavicollis) population using an anthelmintic, in replicated trapping areas, and subsequently monitored the prevalence and intensity of macroparasites in the untreated sex. We focussed on the dominant parasite Heligmosomoides polygyrus and found that reducing parasites in males caused a consistent reduction of parasitic intensity in females, estimated through faecal egg counts, but the removal of parasites in females had no significant influence on the parasites in males. This finding suggests that males are responsible for driving the parasite infection in the host population and females may play a relatively trivial role. The possible mechanisms promoting such patterns are discussed.  相似文献   

7.
Aim To use a comparative approach to understand parasite demographic patterns in native versus introduced populations, evaluating the potential roles of host invasion history and parasite life history. Location North American east and west coasts with a focus on San Francisco Bay (SFB). Methods Species richness and prevalence of trematode parasites were examined in the native and introduced ranges of two gastropod host species, Ilyanassa obsoleta and Littorina saxatilis. We divided the native range into the putative source area for introduction and areas to the north and south; we also sampled the overlapping introduced range in SFB. We dissected 14,781 snails from 103 populations and recorded the prevalence and identity of trematode parasites. We compared trematode species richness and prevalence across the hosts’ introduced and native ranges, and evaluated the influence of host availability on observed patterns. Results Relative to the native range, both I. obsoleta and L. saxatilis have escaped (lost) parasites in SFB, and L. saxatilis demonstrated a greater reduction of trematode diversity and infection prevalence than I. obsoleta. This was not due to sampling inequalities between the hosts. Instead, rarefaction curves suggested complete capture of trematode species in native source and SFB subregions, except for L. saxatilis in SFB, where infection was extremely rare. For I. obsoleta, infection prevalence of trematodes using fish definitive hosts was significantly lower in SFB compared to the native range, unlike those using bird hosts. Host availability partly explained the presence of introduced trematodes in SFB. Main conclusions Differential losses of parasite richness and prevalence for the two gastropod host species in their introduced range is probably the result of several mechanistic factors: time since introduction, propagule pressure, vector of introduction, and host availability. Moreover, the recent occurrence of L. saxatilis’ invasion and its active introduction vector suggest that its parasite diversity and distribution will probably increase over time. Our study suggests that host invasion history and parasite life history play key roles in the extent and diversity of trematodes transferred to introduced populations. Our results also provide vital information for understanding community‐level influences of parasite introductions, as well as for disease ecology in general.  相似文献   

8.
Geographic parthenogenesis has been explained as resulting from parasite pressure (Red Queen hypothesis): several studies have found high degrees of sexuals where the prevalence of parasites is high. However, it is important to address whether prevalence of parasites mirrors risk of infection. We explored geographic parthenogenesis of Ips acuminatus bark beetles and their nematodes. Local climate is crucial for nematode stages outside the host, in spring and summer, and prevalence should thus be associated with those temperatures if prevalence reliably reflects exposure risk across populations. This was the case; however, high prevalence of a virulent nematode species was not associated with many sexuals, whereas highly sexual populations were characterized by high infection risk of benign nematodes. Low virulence of the latter makes Red Queen dynamics unlikely. Geographical patterns of parthenogenesis were instead associated with winter temperature and variance in temperature.  相似文献   

9.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

10.
There are few examples of host population regulation by macroparasites in stable communities; however, strong impact of parasites on the host individual is obvious in many cases (for example increased mortality, a reduction in fecundity up to the complete castration). Associations between the host populations (periwinkle Littorina obtusata) and prevalence of trematodes was investigated using long-term data (1982–1997) of two L. obtusata populations in the White Sea, northwest Russia. We hypothesized that high prevalence of trematodes will reduce future host population density, and increase mortality. Using a general linear model, we found a significant negative correlation between host population density and the prevalence of the most abundant parasite, Microphallus piriformes in the previous year. We found no correlation between snail reproduction and the prevalence, but observed a significant reduction in middle-aged mollusk abundance which was associated with high prevalence. This indicates the importance of parasite-induced mortality for the dynamics of the host population. There was an association between trematode infection and L. obtusata populations that influence their distribution within littoral zone. The ‘source’ population, located in the lower section of the macrophyte zone, appears to be self-sustaining, controlling the whole population recruitment and dynamics.  相似文献   

11.
In parasites with a complex life cycle, the fitness of an individual depends on its probability of reaching the final host and on its fecundity. Because larval growth in intermediate hosts may affect both transmission and adult size, selection should optimize growth patterns that are conditional on the presence and number of conspecific competitors. A recent model predicts that the total parasite volume per host should increase with intensity if larvae are able to vary growth depending on the number of conspecifics in the host (Life History Strategy hypothesis, i.e. LHS). Further, we would here expect growth rates to increase with intensity. By contrast, under the simplest alternative hypothesis of Resource Constraints (i.e. RC), the total parasite volume should remain constant. We experimentally infected copepods Macrocyclops albidus with the cestode Schistocephalus solidus to achieve 1, 2 or 3 parasites per host taking care that hosts had similar quality status at each infection level, and compared larval growth trajectories at the three intensity levels. The asymptotic total parasite volume was larger in double and triple infections than in single infections. Furthermore, the asymptotic total parasite volume was significantly larger in triple than in double infections but only in larger copepods that were less constrained by a host-size ceiling effect. These results, together with the fact that growth rates increased with intensity, support the LHS hypothesis: procercoids of a tapeworm may “count” their conspecific competitors in their first intermediate host to harvest its resources strategically until the next step in their complex life cycle. Co-ordinating editor: A. Biere  相似文献   

12.
Co-evolution between parasites and their hosts may lead to changes in the life-history traits of the host that promote sustainability of their populations despite parasite pressure. Such changes are expected to be especially pronounced in the host-parasite systems where parasites cause complete castration of their hosts. We have studied populations of the rough periwinkle, Littorina saxatilis, infested by castrating trematode species, in order to determine whether high infestation levels are associated with a compensatory increase in host fecundity. To test this hypothesis, we determined female fecundity in populations with trematode prevalence spanning from <1% to 30-75%, and followed long-term changes in female fecundity and trematode infestation in two heavily infested populations of L. saxatilis. The broad-scale geographic analysis of populations with different trematode burdens showed that fecundity of uninfected females is significantly higher in highly infested L. saxatilis populations than in those with low trematode burdens. This is also supported by a comparison of fecundity in two pairs of geographically adjacent populations with contrasting trematode levels, revealing higher fecundity of uninfected females in heavily infested populations. Higher fecundity could be explained by the larger size of uninfected females in some heavily infested populations but not in others. Long-term (15-20 years) intra-population analysis performed in two heavily infested L. saxatilis populations showed that female fecundity increased in parallel with a long-term increase in trematode prevalence from 20% to >75% in one population, but remained high and relatively stable in the second population, reflecting its consistently high trematode prevalence (40-65%). These data support the hypothesis that an increase in female fecundity may be a population compensation mechanism in response to heavy trematode infestation in L. saxatilis and suggest the possible involvement of both natural selection and fast (physiological) regulation mechanisms.  相似文献   

13.
Biomphalaria glabrata are simultaneous hermaphroditic freshwatersnails that act as intermediate hosts for the macroparasitictrematode Schistosoma mansoni, a causative agent of schistosomiasis.Heritability and strain-specificity of both snail resistanceand susceptibility to schistosome infection have been demonstrated,genetic variability for which is maintained, in part, throughtrade-offs between high fitness costs associated with infectionand those associated with resistance. However, despite sucha high cost of resistance and a low prevalence of infectionin natural snail populations, genes for resistance are maintainedwithin snail populations over successive generations, includingin the complete absence of parasite pressure in laboratory populations.This may be indicative of alternative benefits of resistancegenes, in addition to parasite defense, such as differentialmating success between genotypes. Here we examined the mateand gender choice of snails across a multi-factorial range ofpotential partner combinations. These included host-resistanceor susceptibility genotype, host genotype frequency within thepopulation, current parasite infection status, and parasitegenotype. We demonstrate recognition and discrimination by hostsnails depending on host and/or parasite genotype for each ofthese factors. In particular, our results suggest that a raremating advantage to resistant genotypes may be a potential explanationfor the maintenance of highly costly resistance genes withinintermediate host populations under conditions of low or zeroparasite pressure.  相似文献   

14.
The role of parasites in a marine invasion was assessed by first examining regional patterns of trematode parasitism in the introduced Japanese mud snail, Batillaria cumingi (= B. attramentaria), in nearly all of its introduced range along the Pacific Coast of North America. Only one parasite species, which was itself a non-native species, Cercaria batillariae was recovered. Its prevalence ranged from 3 to 86%. Trematode diversity and prevalence in B. cumingi and a native sympatric mud snail, Cerithidea californica, were also compared in Bolinas Lagoon, California. Prevalence of larval trematodes infecting snails as first intermediate hosts was not significantly different (14% in B. cumingi vs 15% in C. californica). However, while the non-native snail was parasitized only by one introduced trematode species, the native snail was parasitized by 10 native trematode species. Furthermore, only the native, C. californica, was infected as a second intermediate host, by Acanthoparyphium spinulosum(78% prevalence). Given the high host specificity of trematodes for first intermediate hosts, in marshes where B. cumingi is competitively excluding C. californica, 10 or more native trematodes will also become locally extinct.  相似文献   

15.
1. Increasing urbanisation is often cited as a cause of declining biodiversity, but for bumblebees there is evidence that urban populations of some species such as Bombus terrestris L. may be more dense than those found in agricultural landscapes, perhaps because gardens provide plentiful floral resources and nesting opportunities. 2. Here we examine the influence of urbanisation on the prevalence of the main protozoan parasites of bumblebees in west central Scotland. We would expect transmission rates and prevalence of parasites to be higher in high density host populations, all else being equal. 3. Workers of two bee species, B. terrestris and B. pascuorum, were sampled over a 45‐day period in mid to late summer, and parasites were detected in faeces and via dissection. A comparison of the two methods suggests that faecal sampling is considerably less sensitive than dissection, failing to detect infection in 27.8%, 55.1%, and 80% of cases of infection with the parasites Crithidia bombi, Nosema bombi, and Apicystis bombi, respectively. 4. For all three parasites, broad patterns of prevalence were similar, with prevalence tending to increase with urbanisation in B. terrestris but not in B. pascuorum. The different patterns of seasonal prevalence in the two bee species suggest that intraspecific transmission is more important that interspecific transmission. 5. Our observation of greater parasite prevalence among B. terrestris in urban compared with rural areas suggests that urban habitats may present greater opportunities for parasite transmission. Greater bee densities in urban areas may be the driving factor; however, further study is still needed. For example, differences in disease prevalence between habitats could be driven by differences in the types and abundance of flowers that are available, or in exposure to environmental stressors.  相似文献   

16.
The importance of parasitism for host populations depends on local parasite richness and prevalence: usually host individuals face higher infection risk in areas where parasites are most diverse, and host dispersal to or from these areas may have fitness consequences. Knowing how parasites are and will be distributed in space and time (in a context of global change) is thus crucial from both an ecological and a biological conservation perspective. Nevertheless, most research articles focus just on elaborating models of parasite distribution instead of parasite diversity. We produced distribution models of the areas where haemosporidian parasites are currently highly diverse (both at community and at within‐host levels) and prevalent among Iberian populations of a model passerine host: the blackcap Sylvia atricapilla; and how these areas are expected to vary according to three scenarios of climate change. On the basis of these models, we analysed whether variation among populations in parasite richness or prevalence are expected to remain the same or change in the future, thereby reshuffling the geographic mosaic of host‐parasite interactions as we observe it today. Our models predict a rearrangement of areas of high prevalence and richness of parasites in the future, with Haemoproteus and Leucocytozoon parasites (today the most diverse genera in blackcaps) losing areas of high diversity and Plasmodium parasites (the most virulent ones) gaining them. Likewise, the prevalence of multiple infections and parasite infracommunity richness would be reduced. Importantly, differences among populations in the prevalence and richness of parasites are expected to decrease in the future, creating a more homogeneous parasitic landscape. This predicts an altered geographic mosaic of host‐parasite relationships, which will modify the interaction arena in which parasite virulence evolves.  相似文献   

17.
Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite Serratia marcescens to kill Caenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations.  相似文献   

18.
Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within‐host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource‐explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory. The model mechanistically explained the dynamic multivariate responses of the human parasite Schistosoma mansoni and its intermediate host snail to variation in resources and host density. At the population level, feedbacks mediated by resource competition could create a unimodal relationship between snail density and human risk of exposure to schistosomes. Consequently, weak snail control could backfire if reductions in snail density release remaining hosts from resource competition. If resource competition is strong and relevant to schistosome production in nature, it could inform control strategies.  相似文献   

19.
The paper draws together a large and scattered body of empirical evidence concerning the prevalence of snail infection with schistosome parasites in field situations, the duration of the latent period of infection in snails (and its dependence on temperature), and the mortality rates of infected and uninfected snails in field and laboratory conditions. A review and synthesis of quantitative data on the population biology of schistosome infections within the molluscan host is attempted and observed patterns of infection are compared with predictions of a schistosomiasis model developed by May (1977) which incorporates differential snail mortality (between infected and uninfected snails) and latent periods of infection. It is suggested that the low levels of prevalence within snail populations in endemic areas of schistosomiasis are closely associated with high rates of infected snail mortality and the duration of the latent period of infection within the mollusc. In certain instances, the expected life-span of an infected snail may be less than the duration of the latent period of infection. Such patterns generate very low levels of parasite prevalence. A new age prevalence model for schistosome infections within snail populations is developed and its predictions compared with observed patterns. The implications of this study of observed and predicted patterns of snail infection within molluscan populations are discussed in relation to the overall transmission dynamics of schistosomiasis.  相似文献   

20.
Seawater intrusion associated with decreasing groundwater levels and rising seawater levels may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of artificial seawater on host-parasite interactions using a freshwater snail host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni. To evaluate the impact of increasing salinity on disease transmission four variables were analyzed: snail survival, snail reproduction, infection prevalence, and the survival of the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg mass production, and snail infection prevalence as salinity increases. However, cercarial survival peaked at an intermediate salinity value. Our results suggest that seawater intrusion into freshwaters has the potential to decrease schistosome transmission to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号