首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the SLC20 family or type III Na+-coupled Pi cotransporters (PiT-1, PiT-2) are ubiquitously expressed in mammalian tissue and are thought to perform a housekeeping function for intracellular Pi homeostasis. Previous studies have shown that PiT-1 and PiT-2 mediate electrogenic Pi cotransport when expressed in Xenopus oocytes, but only limited kinetic characterizations were made. To address this shortcoming, we performed a detailed analysis of SLC20 transport function. Three SLC20 clones (Xenopus PiT-1, human PiT-1, and human PiT-2) were expressed in Xenopus oocytes. Each clone gave robust Na+-dependent 32Pi uptake, but only Xenopus PiT-1 showed sufficient activity for complete kinetic characterization by using two-electrode voltage clamp and radionuclide uptake. Transport activity was also documented with Li+ substituted for Na+. The dependence of the Pi-induced current on Pi concentration was Michaelian, and the dependence on Na+ concentration indicated weak cooperativity. The dependence on external pH was unique: the apparent Pi affinity constant showed a minimum in the pH range 6.2–6.8 of 0.05 mM and increased to 0.2 mM at pH 5.0 and pH 8.0. Xenopus PiT-1 stoichiometry was determined by dual 22Na-32Pi uptake and suggested a 2:1 Na+:Pi stoichiometry. A correlation of 32Pi uptake and net charge movement indicated one charge translocation per Pi. Changes in oocyte surface pH were consistent with transport of monovalent Pi. On the basis of the kinetics of substrate interdependence, we propose an ordered binding scheme of Na+:H2PO4:Na+. Significantly, in contrast to type II Na+-Pi cotransporters, the transport inhibitor phosphonoformic acid did not inhibit PiT-1 or PiT-2 activity. Na+-Pi cotransport; two-electrode voltage clamp; surface pH electrode; SLC20; retroviral receptor  相似文献   

2.
The effect of Na+ on phosphate uptake was studied in four strainsof cyanobacteria: Synechococcus PCC 7942, Gloeothece PCC 6501,Phormidium sp. and Chlorogloeopsis PCC 6912. Phosphate uptakewas stimulated by Na+ in all cases. Li+ and K+ acted as partialanalogues for Na+. Half-saturation [K1/2(Na+)] of phosphateuptake was reached with Na+ concentrations ranging from 317µM in Chlorogloeopsis to 659 µM in Phormidium. Theconcentration of phosphate required to reach half-saturationof phosphate uptake [K1/2(Pi)]was not changed by the presenceof Na+. (Received April 11, 1994; Accepted July 5, 1994)  相似文献   

3.
Phosphate reabsorption in the renal proximal tubule occurs mostly via the type IIa Na+-phosphate cotransporter (NaPi-IIa) in the brush border membrane (BBM). The activity and localization of NaPi-IIa are regulated, among other factors, by parathyroid hormone (PTH). NaPi-IIa interacts in vitro via its last three COOH-terminal amino acids with the PDZ protein Na+/H+-exchanger isoform 3 regulatory factor (NHERF)-1 (NHERF1). Renal phosphate reabsorption in Nherf1-deficient mice is altered, and NaPi-IIa expression in the BBM is reduced. In addition, it has been proposed that NHERF1 and NHERF2 are important for the coupling of PTH receptors (PTHRs) to phospholipase C (PLC) and the activation of the protein kinase C pathway. We tested the role of NHERF1 in the regulation of NaPi-IIa by PTH in Nherf1-deficient mice. Immunohistochemistry and Western blotting demonstrated that stimulation of apical and basolateral receptors with PTH-(1–34) led to internalization of NaPi-IIa in wild-type and Nherf1-deficient mice. Stimulation of only apical receptors with PTH-(3–34) failed to induce internalization in Nherf1-deficient mice. Expression and localization of apical PTHRs were similar in wild-type and Nherf1-deficient mice. Activation of the protein kinase C- and A-dependent pathways with 1,2-dioctanoyl-sn-glycerol or 8-bromo-cAMP induced normal internalization of NaPi-IIa in wild-type, as well as Nherf1-deficient, mice. Stimulation of PLC activity due to apical PTHRs was impaired in Nherf1-deficient mice. These data suggest that NHERF1 in the proximal tubule is important for PTH-induced internalization of NaPi-IIa and, specifically, couples the apical PTHR to PLC. phosphate cotransporter; PDZ protein; parathyroid hormone; proximal tubule  相似文献   

4.
Characterization of inorganic phosphate transport in osteoclast-like cells   总被引:1,自引:0,他引:1  
Osteoclasts possess inorganic phosphate (Pi) transport systems to take up external Pi during bone resorption. In the present study, we characterized Pi transport in mouse osteoclast-like cells that were obtained by differentiation of macrophage RAW264.7 cells with receptor activator of NF-B ligand (RANKL). In undifferentiated RAW264.7 cells, Pi transport into the cells was Na+ dependent, but after treatment with RANKL, Na+-independent Pi transport was significantly increased. In addition, compared with neutral pH, the activity of the Na+-independent Pi transport system in the osteoclast-like cells was markedly enhanced at pH 5.5. The Na+-independent system consisted of two components with Km of 0.35 mM and 7.5 mM. The inhibitors of Pi transport, phosphonoformic acid, and arsenate substantially decreased Pi transport. The proton ionophores nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone as well as a K+ ionophore, valinomycin, significantly suppressed Pi transport activity. Analysis of BCECF fluorescence indicated that Pi transport in osteoclast-like cells is coupled to a proton transport system. In addition, elevation of extracellular K+ ion stimulated Pi transport, suggesting that membrane voltage is involved in the regulation of Pi transport activity. Finally, bone particles significantly increased Na+-independent Pi transport activity in osteoclast-like cells. Thus, osteoclast-like cells have a Pi transport system with characteristics that are different from those of other Na+-dependent Pi transporters. We conclude that stimulation of Pi transport at acidic pH is necessary for bone resorption or for production of the large amounts of energy necessary for acidification of the extracellular environment. Na+-dependent phosphate cotransporter; RAW264.7; phosphate uptake  相似文献   

5.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

6.
Anabaena PCC 7119 showed higher rates of phosphate uptake whencells were under P-starvation. Phosphate uptake was energy-dependentas indicated the decrease observed when assays were performedin the dark or in the presence of inhibitors of photosyntheticelectron transport, energy transfer and adenosine triphosphataseactivity. Phosphate uptake was stimulated by Na+ both in P-sufficientcells and P-starved cells. Li+ and K+ acted as partial analoguesfor Na+. The Na+-stimulation of phosphate uptake followed Michaelis-Mentenkinetics, half-saturation (K) of phosphate uptake was reachedwith a Na+ concentration of 212 µM. The absence of Na+reduced the rates of phosphate uptake at all phosphate concentrationsassayed (1–20 µM). The maximum uptake rates (Vmax)decreased from 658 nmol P (mg dry wt)-1 h-1 in the presenceof Na+ to 149 nmol P (mg dry wt)-1 h-1 in the absence of Na+.The absence of Na+ did not change significantly the concentrationof phosphate required to reach half-saturation (K) (3.01 µMin the presence of Na+ vs 3.21 µM in the absence of Na+).In the presence of Na+ the rate of phosphate uptake was affectedby the pH; optimal rates were observed at pH 8. In the absenceof Na+ phosphate uptake was not affected by the pH; low rateswere observed in all cases. Monensin, an ionophore which collapsesNa+-gradients, reduced the rate of phosphate uptake in Na+-supplementedcells. These results indicated the existence of a Na+-dependentphosphate uptake in Anabaena PCC 7119. (Received September 8, 1992; Accepted November 17, 1992)  相似文献   

7.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

8.
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na and [Ca2+]i during ischemia (P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 µM N-nitro-L-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na accumulation on NCE. myocardial ischemia; Na+/H+ exchange; Na+/Ca2+ exchange; nuclear magnetic resonance; ischemic biology; ion channels/membrane transport; transplantation  相似文献   

9.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

10.
Palytoxin-induced cell death cascade in bovine aortic endothelial cells   总被引:1,自引:0,他引:1  
The plasmalemmal Na+-K+-ATPase (NKA) pump is the receptor for the potent marine toxin palytoxin (PTX). PTX binds to the NKA and converts the pump into a monovalent cation channel that exhibits a slight permeability to Ca2+. However, the ability of PTX to directly increase cytosolic free Ca2+ concentration ([Ca2+]i) via Na+ pump channels and to initiate Ca2+ overload-induced oncotic cell death has not been examined. Thus the purpose of this study was to determine the effect of PTX on [Ca2+]i and the downstream events associated with cell death in bovine aortic endothelial cells. PTX (3–100 nM) produced a graded increase in [Ca2+]i that was dependent on extracellular Ca2+. The increase in [Ca2+]i initiated by 100 nM PTX was blocked by pretreatment with ouabain with an IC50 < 1 µM. The elevation in [Ca2+]i could be reversed by addition of ouabain at various times after PTX, but this required much higher concentrations of ouabain (0.5 mM). These results suggest that the PTX-induced rise in [Ca2+]i occurs via the Na+ pump. Subsequent to the rise in [Ca2+]i, PTX also caused a concentration-dependent increase in uptake of the vital dye ethidium bromide (EB) but not YO-PRO-1. EB uptake was also blocked by ouabain added either before or after PTX. Time-lapse video microscopy showed that PTX ultimately caused cell lysis as indicated by release of transiently expressed green fluorescent protein (molecular mass 27 kDa) and rapid uptake of propidium iodide. Cell lysis was 1) greatly delayed by removing extracellular Ca2+ or by adding ouabain after PTX, 2) blocked by the cytoprotective amino acid glycine, and 3) accompanied by dramatic membrane blebbing. These results demonstrate that PTX initiates a cell death cascade characteristic of Ca2+ overload. necrosis; vital dyes; membrane blebs; time-lapse video microscopy; fura-2  相似文献   

11.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

12.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

13.
The effects of a new, potent, and selective inhibitor of the Na+/Ca2+ exchange, SEA-0400 (SEA), on steady-state outward (forward exchange), inward (reverse exchange), and Ca2+/Ca2+ transport exchange modes were studied in internally dialyzed squid giant axons from both the extra- and intracellular sides. Inhibition by SEA takes place preferentially from the intracellular side of the membrane. Its inhibition has the following characteristics: it increases synergic intracellular Na+ (Nai+) + intracellular H+ (Hi+) inactivation, is antagonized by ATP and intracellular alkalinization, and is enhanced by intracellular acidification even in the absence of Na+. Inhibition by SEA is still present even after 1 h of its removal from the experimental solutions, whereas removal of the cointeracting agents of inhibition, Nai+ and Hi+, even in the continuous presence of SEA, releases inhibition, indicating that SEA facilitates the reversible attachment of the natural Hi+ and Nai+ synergic inhibitors. On the basis of a recent model of squid Na+/Ca2+ exchange regulation (DiPolo R and Beaugé L. J Physiol 539: 791–803, 2002), we suggest that SEA acts on the Hi+ + Nai+ inactivation process and can interact with the Na+-free and Na+-bound protonized carrier. Protection by ATP concurs with the antagonism of the nucleotide by Hi+ + Nai+ synergic inhibition. ionic-metabolic interactions  相似文献   

14.
To study and define the early time-dependent response (6 h) ofblocker-sensitive epithelial Na+channels (ENaCs) to stimulation ofNa+ transport by aldosterone, weused a new modified method of blocker-induced noise analysis todetermine the changes of single-channel current (iNa) channel open probability(Po), andchannel density(NT) undertransient conditions of transport as measured by macroscopic short-circuit currents(Isc). In threegroups of experiments in which spontaneous baseline rates of transportaveraged 1.06, 5.40, and 15.14 µA/cm2, stimulation of transportoccurred due to increase of blocker-sensitive channels.NT variedlinearly over a 70-fold range of transport (0.5-35µA/cm2). Relatively small andslow time-dependent but aldosterone-independent decreases ofPo occurredduring control (10-20% over 2 h) and aldosterone experimentalperiods (10-30% over 6 h). When thePo of control andaldosterone-treated tissues was examined over the 70-fold extendedrange of Na+ transport,Po was observedto vary inversely withIsc, falling from~0.5 to ~0.15 at the highest rates ofNa+ transport or ~25% per3-fold increase of transport. Because decreases ofPo from anysource cannot explain stimulation of transport by aldosterone, it isconcluded that the early time-dependent stimulation ofNa+ transport in A6 epithelia isdue exclusively to increase of apical membraneNT.

  相似文献   

15.
The effect of elevated Na+ concentration on Na+ permeability(PNa) and Na+ influx in the presence of two levels of externaldivalent cations was determined in Chara corallina and freshwater-culturedChara buckellii. When Na+ in the medium was increased from 1.0to 70 mol m–3, Na+ influx increased in both species ifCa2+ was low (0.1 mol m–3). If Ca2+ was increased to 7.0mol m–3 when Na+ was increased, Na+ influx remained atthe low control level in C. corallina, and showed only a temporaryincrease in C. buckellii. Mg2+ was a better substitute for Ca2+in C. buckellii than in C. corallina. Na+ permeability data suggest that when the external Ca2+ concentrationis low, PNa does not increase in the presence of elevated NaCl;the increase in Na+ influx appears to be due to the increasein external Na+ concentration alone. Ca2 + supplementation appearsto decrease PNa whereas supplemental Mg2+ has no effect. Na+ effluxes were computed from previously determined net fluxesand the influxes. It was found that for both species, fluxesin both directions were stimulated in response to all experimentaltreatments, but Na+ influx always exceeded efflux. This resultedin net Na+ accumulation in the vacuoles of both species. The results are discussed with reference to net flux and electrophysiologicaldata obtained previously under identical conditions, as wellas the comparative salinity tolerance of both species and theNa+/divalent cation ratio. Key words: Na+ influx, Na+ tolerance, membrane potential, permeability, Chara  相似文献   

16.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

17.
Hormonal regulation of ENaCs: insulin and aldosterone   总被引:6,自引:0,他引:6  
Although a variety of hormones and other agents modulate renalNa+ transport acting by way of theepithelial Na+ channel (ENaC), themode(s), pathways, and their interrelationships in regulation of thechannel remain largely unknown. It is likely that several hormones maybe present concurrently in vivo, and it is, therefore, important tounderstand potential interactions among the various regulatory factorsas they interact with the Na+transport pathway to effect modulation ofNa+ reabsorption in distal tubulesand other native tissues. This study represents specifically adetermination of the interaction between two hormones, namely,aldosterone and insulin, which stimulate Na+ transport by entirelydifferent mechanisms. We have used a noninvasive pulse protocol ofblocker-induced noise analysis to determine changes in single-channelcurrent (iNa),channel open probability (Po), andfunctional channel density(NT) ofamiloride-sensitive ENaCs at various time points following treatmentwith insulin for 3 h of unstimulated control and aldosterone-pretreatedA6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs(NT) involvedin transport. The very early (10 min) increases of channel density wereaccompanied by relatively small decreases ofiNa(10-20%) and decreases ofPo (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes ofiNa,Po, andNT weretransient, returning very slowly over 3 h toward their respectivecontrol values at the time of addition of insulin. We conclude thataldosterone and insulin act independently to stimulate apicalNa+ entry into the cells of A6epithelia by increase of channel density.

  相似文献   

18.
This paper reports the effects of low O2 concentration (0–01,0–055, and 0.115mol m–3) in nutrient solutions onK+/Na+ selectivity of growing and mature root tissues of 6-to 8-d-old, intact, wheat (Triticum aestivum cv. Gamenya) seedlings. Increases in anaerobic catabolism and decreases in O2 uptake,K+ uptake and K+/Na+ selectivity were all more pronounced and/oroccurred at higher external O2 concentrations in the apex (0–2mm) than in the expanding tissues (2–4 mm); these growingtissues were, in turn, more affected than the expanded tissuesof the roots (4–12 mm). Selectivity for K+ over Na+ in roots and shoots was particularlysensitive to O2 deficiency. For example, in apical tissues (0–2mm) K + /Na+ selectivity was already reduced at 0.115 mol m–3O2, yet at this O2 concentration there was no effect on eithergrowth or (K+/Na+) uptake. Upon transfer from 0.01 to 0.26 mol m–3 O2, a detailedstudy of the 12 mm root tips showed that 70% of these tips regainedhigh (K+ + Na+) concentrations and K+/Na+ ratios. In contrast,there was no recovery in the remaining 30% of the 12 mm roottips. Net K+ transport to the shoots during the period afterre-aeration was negative for the population as a whole. Theseverity of these effects supports the view that the root tipsand the stele were more susceptible to O2 deficiency than wasthe cortex of the fully-developed root tissues. Key words: Hypoxia, K+/Na+ selectivity, expanded and expanding tissues  相似文献   

19.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

20.
The acidophilic alga Dunaliella acidophila exhibits optimalgrowth at pH 1. We have investigated the regulation of phosphateuptake by this alga using tracer techniques and by performingintracellular phosphate measurements under different growthconditions including phosphate limitation. In batch culturewith 2·2 mol m–3 phosphate in the medium the uptakeof phosphate at micromolar phosphate concentrations followeda linear time dependence in the range of minutes and rates werein the range of 1 µmol phosphate mg–1 chl h–1,only. However, under discontinuous phosphate-limited growthconditions, tracer influx revealed a biphasic pattern at micromolarphosphate concentrations: An initial burst phase resulted ina 104-fold internal phosphate accumulation and levelled offafter about 10 s. A double reciprocal plot of the initial influxrates obtained for phosphate-limited and unlimited algae exhibitedMichaelis-Menten kinetics. Phosphate limitation caused a significantactivation of the maximum velocity of uptake, yielding Vmaxup to 1 mmol mg–1 chl h–1 as compared to valuesin the order of 50 µmol phosphate mg–1 chl h–1for the second phase (this magnitude is also representativefor non-limited batch cultures). Concomitantly the Michaelisconstant was altered from 4 mmol m–3 to 0·7 mmolm–3. The rapid uptake of phosphate was inhibited by arsenateand FCCP and was not stimulated by Na+. The pH dependence oftracer accumulation and measurements of the intracellular phosphatepool under different growth conditions indicate that at lowpH and low external phosphate concentrations the high protongradient present under these conditions is utilized for a H3PO4uptake or a H+/H2PO4 cotransport. However, when the externalphosphate concentration was increased to levels sufficientlyhigh for transport to be driven by the positive membrane potential(10 mol m–3 phosphate), the pH dependence of phosphateuptake was more complex, but could be explained by the uptakeof H3PO4 or a H+/H2PO4-cotransport at low pH and a differenttype H2PO4-transport (with unknown type of ion coupling)at high pH-values. It is suggested that this flexible couplingof phosphate transport is of essential importance for the acidresistance of Dunaliella acidophila. Key words: Acid resistance, Dunaliella acidophila, phosphate cotransport, phosphate limitation, plasma membrane, sodium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号