首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. In order to elucidate some features of the mechanism of the acceleration of methanesulfonylation of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) with cationic accelerators, the methanesulfonylation of this enzyme by high concentrations of methanesulfonylfluoride, in the absence and presence of accelerators decamethonium and tetraethylammonium, was studied. 2. The results showed that the accelerator accelerates the reaction by electrostatically improving the binding between acetylcholinesterase and methanesulfonylfluoride without effecting the rate of the decomposition of the enzyme-inhibitor complex into the methanesulfonylated enzyme and product.  相似文献   

2.
3.
Based on the assumption that the electrostatic charges on the surface of sheep leukocytes arise from the dissociation of ionogenic groups, together with the presence of divalent cation (or trivalent cation) in the suspending medium of low ionic strength (or high ionic strength), the non-linear Poisson-Boltzmann equation for cell interaction with a solid surface with constant potential (or constant charge) is numerically solved in this paper. The cellular surface potential and the repulsive (or attractive) force is expressed as the function of separation distance. Because of shrinking the thickness of the electrostatic double layer at high ionic strength, the presence of cationic electrolyte has a less influential role on both the cellular surface potential and interaction force than at low ionic strength. However, due to the continuous equilibration of the ionogenic groups on the cellular surface as separation distance decreases, the presence of cationic electrolyte will not always reduce the interaction force during the whole adhesion period. The distance at which the cationic electrolyte changes its effect from positive to negative is termed the critical separation distance in this paper.  相似文献   

4.
Aging of soman-inhibited acetylcholinesterase: inhibitors and accelerators   总被引:1,自引:0,他引:1  
The influence of 27 possible effectors, mostly bispyridinium salts, upon the dealkylation (aging) of soman-inhibited acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) was examined at pH 7.6 and 25 degrees C. In the absence of effectors, the rate constant of the aging process was 4.0. 10(-2) min-1. At 2 mM, the strongest inhibitor reduced the rate to 0.8. 10(-2) min-1, whereas it was raised to 8.2. 10(-2) min-1 by the most potent accelerator.  相似文献   

5.
The evoked effects of the negatively charged drugs phenobarbital and barbituric acid, the positively charged imipramine, perphenazine and trifluoperazine, and the neutral primidone, on the synaptosome-associated acetylcholinesterase activity were studied. A marked increase in the enzyme activity was exhibited in the presence of low concentrations (up to 3 mM) of phenobarbital, barbituric acid and primidone. Higher concentrations (up to 10 mM), however, led to a progressive inhibition of the enzyme activity. However, the activity of the enzyme was not affected by imipramine, but it was decreased by perphenazine and trifluoperazine. Arrhenius plots of acetylcholinesterase activity exhibited a break point at 23.4 degrees C for the untreated (control) synaptosomes, which was shifted to around 16 degrees C in the synaptosomes treated with the charged drugs. The allosteric inhibition by F- of acetylcholinesterase was studied in control synaptosomes and in those treated with the charged drugs. Changes in the Hill coefficients in combination with changes in Arrhenius activation energy produced by the charged drugs would be expected if it is assumed that charged drugs 'fluidize' the synaptosomal plasma membranes.  相似文献   

6.
Puromycin as an inhibitor of acetylcholinesterase   总被引:1,自引:0,他引:1  
  相似文献   

7.
D-Tubocurarine, a reversible peripheral inhibitor of cholinesterases accelerates methanesulfonylation of Drosophila melanogaster wild type and W359L mutant. The kinetic evaluation of the process was performed in a step-by-step analysis. The second order overall sulfonylation rate constants, determined from classical residual activity measurements, were used in the subsequent analysis of progress curves. The latter were obtained by measuring the hydrolysis of acetylthiocholine in a complex reaction system of enzyme, substrate, irreversible and reversible inhibitor. The underlying kinetic mechanisms, from such a complex data, could only be untangled by targeted inspection and successive incorporation of reaction steps for which experimental evidence existed. The study showed that the peripheral ligand D-tubocurarine, by binding at the entrance into the active site of the two investigated enzymes (Golicnik et al., Biochemistry 40 (2001) 1214), enhances the affinity for small methanesulfonylfluoride, rather to speeding up the formation of a stable covalent enzyme-inhibitor complex. The specific arrangements at the rim of the active site of each individual enzyme dictate the actual events which can be detected by kinetic means.  相似文献   

8.
This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs.  相似文献   

9.
10.
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.  相似文献   

11.
The activation rate of bovine prothrombin by Factor Xa and Ca2+ has long been known to be greatly enhanced by addition of phospholipid. Upon substitution of human plasma lipoproteins for phospholipid (cephalin) in this activation system, only very low density lipoprotein enhances prothrombin activation. Low density lipoprotein and high density lipoprotein have no stimulatory effect on prothrombin activation. On the other hand, the sonicated lipid extracts from very low, low, and high density lipoproteins all can substitute for phospholipid in potentiating prothrombin activation. The efficiency of each lipid extract, in this regard, depends upon its source of extraction, and is greatest for the lipid extract of very low density lipoprotein.  相似文献   

12.
13.
The influence of inorganic salts on the inhibition of acetylcholinesterase by charged organophosphorous inhibitors has been studied. It has been shown that the salt effect on the reaction of acetylcholinesterase with anionic bis(p-nitrophenyl) phosphate is determined by the influence of added salts on the activity coefficient of the inhibitor. In contrast to the salt effects on the reaction of acetylcholinesterase with cationic compounds, it does not include contribution from the enzyme charges. The smaller salt effect in the case of anionic inhibitor can be explained assuming that the anionic inhibitor does not form a non-covalent complex with the enzyme before the phosphorylation step of the reaction. Comparison of salt effects on the substrate turnover showed that in the case of cholinesterases from natural sources they are larger than in the case of enzymes expressed in recombinant cell clones. The enhanced salt effects may result from post-translational modification of the enzyme.  相似文献   

14.
15.
To determine whether the efficacy of entry and action of antisense oligonucleotides (AS-ODN) on hematopoietic stem cells in vitro could be improved by the addition of polyethylene glycol (PEG), a molecule of PEG was bound to AS- or sense-acetylcholinesterase (AS-ACHE or S-ACHE). The introduction of 0.1-0.5 microM PEG-AS-ACHE or 0.5 microM AS-ACHE into methylcellulose bone marrow (BM) cultures produced a doubling in number of colony-forming unit-granulocyte-erythrocyte-macrophage-megakaryocyte (CFU-GEMM) and a 5-fold increase in cell number of the PEG-ODN. Further increase in concentration of the PEG-ODN reduced colony numbers. PEG-AS-ACHE induced higher colony numbers and greatly increased megakaryocyte (MK) formation when compared with PEG and AS-ACHE added separately to the culture. In addition, differentials of the CFU-GEMMs indicated there was a direct relationship between MK number and PEG-AS-ACHE concentration. Under these culture conditions, 5 microM PEG alone gave control values of CFU-GEMM. On addition of FITC-PEG-AS-ACHE to the cell cultures, using confocal microscopy, the nuclei of both early and mature MKs were labeled specifically, whereas all other cellular nuclei were negative to the stain. The use of PEG-AS-ODN, affording specific delivery of AS-ODN to target cells, increased cell proliferation, and enhanced ODN uptake, may be of potential importance in stem cell expansion for BM transplantation and gene therapy.  相似文献   

16.
Zhou HX 《Proteins》2005,61(1):69-78
Salting-out of proteins was discovered in the nineteenth century and is widely used for protein separation and crystallization. It is generally believed that salting-out occurs because at high concentrations salts and the protein compete for solvation water. Debye and Kirkwood suggested ideas for explaining salting-out (Debeye and MacAulay, Physik Z; 1925;131:22-29; Kirkwood, In: Proteins, amino acids and peptides as ions and dipolar ions. New York: Reinhold; 1943. p 586-622). However, a quantitative theory has not been developed, and such a theory is presented here. It is built on Kirkwood's idea that a salt ion has a repulsive interaction with an image charge inside a low dielectric cavity. Explicit treatment is given for the effect of other salt ions on the interaction between a salt ion and its image charge. When combined with the Debye-Hückel effect of salts on the solvation energy of protein charges (i.e., salting-in), the characteristic curve of protein solubility versus salt concentration is obtained. The theory yields a direct link between the salting-out effect and surface tension and is able to provide rationalizations for the effects of salt on the folding stability of several proteins.  相似文献   

17.
The kinetics of acetylcholinesterase-catalyzed hydrolysis of the two cationic substrates (I and II in Russian text) was analyzed by means of the integrated Michaelis equation (3). The constants kII, kcat Km and the enzyme-product complex dissociation constant Ki were determined. (Table 1). It was shown that acetylcholine (II) binds to to the enzyme active center more effectively than the alcohol product of its hydrolysis. In case of the pipecholine derivative (I) reversed situation occurs. The different dependence of the ester substrate and appropriate alcohol binding effectiveness upon the reagent structure indicates the dissimilar location of the molecules in the active center of acetylcholinesterase. Some structural implications of the enzyme active center were discussed.  相似文献   

18.
Ishimota  Makoto  Tomiyama  Naruto 《Limnology》2020,21(2):187-196
Limnology - To determine the potential long-term risks associated with continual use of pesticides, we investigated (1) whether short-term exposure (48 h) of first generation (1G)...  相似文献   

19.
The influence of polarization of surrounding medium on the intraglobular electric field of the alpha-chymotrypsin molecule is considered. The polarization is taken into account by the image charges method, the proper approximations for calculation of the fields due to intraglobular and surface charges are suggested. The polarization of surroundings does not change the qualitative picture of the electric field in the active center of the alpha-chymotrypsin molecule set up by protein dipoles, but reduces almost to zero the intraglobular field set up by surface ions.  相似文献   

20.
An improved method for assaying carbamylated acetylcholinesterase is described which has substantial benefits over current methods. Acetylcholinesterase was carbamylated with neostigmine and diluted extensively into buffer to allow decarbamylation to occur. At various times, phenyldichlorophosphate was added to the mixture of free and carbamylated enzyme, whereupon two very rapid, simultaneous reactions occurred: near total, and permanent, inactivation of free acetylcholinesterase by the organophosphate, and inactivation of phenyldichlorophosphate by hydrolysis. The carbamylated acetylcholinesterase was allowed to reactivate fully and then assayed for enzyme activity. The assay provided a measure of the amount of carbamylated enzyme present at the time of addition of phenyldichlorophosphate, thereby enabling the first-order rate constant for decarbamylation to be calculated. This new method of studying decarbamylation was applied to two systems of soluble acetylcholinesterase, where the half-life for decarbamylation was approximately 1/2 h or 4 min, respectively, and to membrane-bound acetylcholinesterase. The results agreed well with those determined by a conventional method; moreover, the standard error of the mean was lower for the new method. The advantages of the method using phenyldichlorophosphate over conventional methods are particularly evident when decarbamylation is rapid or when in vivo studies are being performed and it is not practical or desirable to run assays immediately on isolation of the tissue. The new method also has advantages over a published related technique using the organophosphate anticholinesterase soman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号