首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of cresols by species of Pseudomonas   总被引:64,自引:11,他引:53       下载免费PDF全文
1. A comparison of rates of oxidation of various compounds by whole cells indicated that protocatechuate was a reaction intermediate when a non-fluorescent species of Pseudomonas oxidized p-cresol. In contrast, a fluorescent Pseudomonas oxidized 3-methylcatechol and 4-methylcatechol when grown with p-cresol, but did not oxidize protocatechuate. 2. Heat-treated extracts of the fluorescent Pseudomonas oxidized catechol, 3-methylcatechol and 4-methylcatechol to ring-fission products, the spectroscopic properties of which were recorded. Rates of enzymic degradation of these products were also measured. 3. Acetic acid and formic acid were obtained by the action of a Sephadex-treated extract on 3-methylcatechol and 4-methylcatechol respectively. In each case 0.8mol. of the carboxylic acid was formed from 1.0mol. of substrate. 4. Dialysed extracts converted 3-methylcatechol into acetaldehyde and pyruvate, with 4-hydroxy-2-oxovalerate as a reaction intermediate. 4-Methylcatechol was converted first into 4-hydroxy-2-oxohexanoate and then into propionaldehyde and pyruvate. 5. The ring-fission product of catechol was formed from phenol by a fluorescent Pseudomonas, that of 3-methylcatechol was formed from o-cresol and m-cresol, and the ring-fission product of 4-methylcatechol was given from p-cresol. Propionate was readily oxidized by these cells after growth with p-cresol, but this compound was not attacked when phenol, o-cresol or m-cresol served as source of carbon. 6. Cell extracts appeared to attack only one enantiomer of synthetic 4-hydroxy-2-oxohexanoate.  相似文献   

2.
1. Partially purified extracts of a Pseudomonas converted the meta ring-fission product of 4-methylcatechol into a compound having spectroscopic and chemical properties consistent with its being 2-oxohex-4-enoic acid. 2. Catechol and 3-methylcatechol were both metabolized to a compound that appeared to be 2-oxopent-4-enoic acid. 3. Solutions of norvaline and norleucine were prepared from these metabolites. 4. A reaction scheme is presented for the conversion of catechols into hydroxyoxo acids after meta ring-fission.  相似文献   

3.
1. (+)-gamma-Carboxymethyl-gamma-methyl-Delta(alpha)-butenolide was isolated from resting-cell cultures of Pseudomonas desmolyticum incubated in the presence of 5-methylsalicylic acid. 2. The structure of this metabolite was deduced from physical and chemical evidence. 3. The isolated compound must be formed in an enzymic reaction since it shows optical activity. 4. The degradative pathway of 4-methylcatechol by Ps. desmolyticum is discussed.  相似文献   

4.
H Schulz 《Biochemistry》1983,22(8):1827-1832
The metabolism of 4-pentenoic acid, a hypoglycemic agent and inhibitor of fatty acid oxidation, has been studied in rat heart mitochondria. Confirmed was the conversion of 4-pentenoic acid to 2,4-pentadienoyl coenzyme A (CoA), which either is directly degraded via beta-oxidation or is first reduced in a NADPH-dependent reaction before it is further degraded by beta-oxidation. At pH 6.9, the NADPH-dependent reduction of 2,4-pentadienoyl-CoA proceeds 10 times faster than its degradation by beta-oxidation. At pH 7.8, this ratio is only 2 to 1. The direct beta-oxidation of 2,4-pentadienoyl-CoA leads to the formation of 3-keto-4-pentenoyl-CoA, which is highly reactive and spontaneously converts to another 3-ketoacyl-CoA derivative (compound X). 3-Keto-4-pentenoyl-CoA is a poor substrate of 3-ketoacyl-CoA thiolase (EC 2.3..1.16) whereas compound X is not measurably acted upon by this enzyme. The effects of several metabolites of 4-pentenoic acid on the activity of 3-ketoacyl-CoA thiolase were studied. 3,4-Pentadienoyl-CoA is a weak inhibitor of this enzyme that is protected against the inhibition by acetoacetyl-CoA. The most effective inhibitor of 3-ketoacyl-CoA thiolase was found to be 3-keto-4-pentenoyl-CoA, which inhibits the enzyme in both a reversible and irreversible manner. The reversible inhibition is possibly a consequence of the inhibitor being a poor substrate of 3-ketoacyl-CoA thiolase. It is concluded that 4-pentenoic acid is metabolized in mitochondria by two pathways. The minor yields 3-keto-4-pentenoyl-CoA, which acts both as a reversible and as a irreversible inhibitor of 3-ketoacyl-CoA thiolase and consequently of fatty acid oxidation.  相似文献   

5.
Li G  Zhang H  Sader F  Vadhavkar N  Njus D 《Biochemistry》2007,46(23):6978-6983
At alkaline pH, 4-methylcatechol oxidizes more rapidly than the related catecholamines: dopamine, norepinephrine, and epinephrine. This oxidation is not inhibited by superoxide dismutase or catalase, indicating that O2 itself is the oxidant, but the reduction potential of O2/O2-* is too low for it to oxidize 4-methylcatechol directly. Instead, O2 oxidizes the 4-methylcatechol semiquinone, which is formed by comproportionation of 4-methylcatechol and its o-quinone. Aniline reacts very quickly with the o-quinone and thus stops the comproportionation reaction that oxidizes 4-methylcatechol to the semiquinone. Oxidation of 4-methylcatechol then requires superoxide, and in the presence of aniline, oxidation of 4-methylcatechol by O2 is inhibited by superoxide dismutase. When catecholamines oxidize, the side chain amine inserts into the catechol o-quinone, forming a bicyclic compound. By eliminating the quinone, this ring closure prevents comproportionation and the consequent oxidation of catecholamines by O2. It also prevents reaction of the quinone with other compounds and the formation of potentially toxic products.  相似文献   

6.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.  相似文献   

7.
Rhodopseudomonas palustris strain RCB100 degrades 3-chlorobenzoate (3-CBA) anaerobically. We purified from this strain a coenzyme A ligase that is active with 3-CBA and determined its N-terminal amino acid sequence to be identical to that of a cyclohexanecarboxylate-CoA ligase encoded by aliA from the R. palustris strain (CGA009) that has been sequenced. Strain CGA009 differs from strain RCB100 in that it does not use 3-CBA as a sole carbon source. The aliA gene from the 3-CBA degrading strain differed by a single nucleotide from the aliA gene from strain CGA009, causing the substitution of a serine for a threonine at position 208. Both AliA enzymes, purified as His-tagged fusion proteins, had comparable activities with cyclohexanecarboxylate. However, AliA from the 3-CBA degrading strain was 10-fold more active with 3-CBA (kcat/Km of 4.3 x 10(4) M(-1) s(-1)) than the enzyme from the sequenced strain (kcat/Km 0.32 x 10(4) M(-1) s(-1)). The CGA009 enzyme was not sufficiently active with 3-CBA to complement an RCB100 aliA mutant for growth on this compound. Here, whole genome sequence information enabled us to identify a single nucleotide among 5.4 million nucleotides that contributes to the substrate preference of a coenzyme A ligase.  相似文献   

8.
The enzymic conversion of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid (i.e. o-succinylbenzoic acid) to 1,4-dihydroxy-2-naphthoic acid is a cyclization reaction which is part of menaquinone (vitamin K2) biosynthesis. This conversion, which is probably a two-step process, was investigated using chirally labelled samples of the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. To synthesize these, the following enzymes were employed: isocitrate: NADP+ oxidoreductase (EC 1.1.1.42), isocitrate glyoxylate-lyase (EC 4.1.3.1), 2-oxoglutarate dehydrogenase complex (which includes EC 1.2.4.2), 4-(2'-carboxyphenyl)-4-oxobutyrate synthase system and 4-(2'-carboxyphenyl)-4-oxobutyrate: CoA ligase. Isocitrate: NADP+ oxidoreductase was employed to generate the two enantiomeric samples of 2-oxoglutarate enantiotopically labelled at C-3. These samples were converted enzymically to succinate with retention of configuration at C-2 and C-3, and to 4-(2'-carboxyphenyl)-4-oxobutyric acid with retention of configuration at C-3. Isocitrate glyoxylate-lyase and isocitrate NADP+ oxidoreductase were employed to generate samples of 2-oxoglutarate enantiotopically tritiated at C-4 or at C-3 and C-4. The four variously labelled samples of 2-oxoglutarate were enzymically converted to the coenzyme A ester of 4-(2'-carboxyphenyl)-4-oxobutyric acid. The resulting variously labelled coenzyme A esters were incubated with naphthoate synthase to investigate the ring closure reaction. In the first step the 2HRe atom of the oxobutyric moiety of the coenzyme A ester is equilibrated with solvent protons in a fast and reversible reaction. Subsequently the 2HSi and 3HSi atoms are removed whereas the 3HRe atom becomes the proton at C-3 of 1,4-dihydroxy-2-naphthoic acid. The second step in this ring closure reaction is the rate-limiting step.  相似文献   

9.
Trichosporon cutaneum degraded L-tryptophan by a reaction sequence that included L-kynurenine, anthranilate, 2,3-dihydroxybenzoate, catechol, and beta-ketoadipate as catabolites. All of the enzymes of the sequence were induced by both L-tryptophan and salicylate, and those for oxidizing kynurenine and its catabolites were induced by anthranilate but not by benzoate; induction was not coordinate. Molecular weights of 66,100 and 36,500 were determined, respectively, for purified 2,3-dihydroxybenzoate decarboxylase and its single subunit. Substrates for this enzyme were restricted to benzoic acids substituted with hydroxyl groups at C-2 and C-3; no added coenzyme was required for activity. Partially purified anthranilate hydroxylase (deaminating) catalyzed the incorporation of one atom of 18O, derived from either 18O2 or H2(18)O, into 2,3-dihydroxybenzoic acid.  相似文献   

10.
Pseudomonas Pxy was isolated on p-xylene as sole source of carbon and energy. Substrates that supported growth were toluene, p-methylbenzyl alcohol, p-tolualdehyde, p-toluic acid, and the analogous m-methyl derivatives, including m-xylene. Cell extracts prepared from Pseudomonas Pxy after growth with either p-xylene or m-xylene oxidized the p- and m-isomers of tolualdehyde as well as p-methylbenzyl alcohol. The same cell extracts also catalyzed a "meta" fission of both 3- and 4-methylcatechol. Treatment of Pseudomonas Pxy with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of two mutant strains. Pseudomonas Pxy-40, when grown on succinate in the presence of p-xylene, accumulated p-toluic acid in the culture medium. Under the same conditions Pseudomonas Pxy-82 accumulated p-toluic acid and also 4-methylcatechol. When Pseudomonas Pxy-82 was grown on succinate in the presence of m-xylene, 3-methylcatechol and 3-methylsalicylic acid were excreted into the culture medium. A pathway is proposed for the initial reactions utilized by Pseudomonas Pxy to oxidize p- and m-xylene.  相似文献   

11.
We have deduced the nucleotide sequence of the genes encoding the three components of 4-chlorobenzoate (4-CBA) dehalogenase from Pseudomonas sp. CBS-3 and examined the origin of these proteins by homology analysis. Open reading frame 1 (ORF1) encodes a 30-kDa 4-CBA-coenzyme A dehalogenase related to enoyl-coenzyme A hydratases functioning in fatty acid beta-oxidation. ORF2 encodes a 57-kDa protein which activates 4-CBA by acyl adenylation/thioesterification. This 4-CBA:coenzyme A ligase shares significant sequence similarity with a large group of proteins, many of which catalyze similar chemistry in beta-oxidation pathways or in siderophore and antibiotic synthetic pathways. These proteins have in common a short stretch of sequence, (T,S)(S,G)G(T,S)(T,E)G(L,X)PK(G,-), which is particularly highly conserved and which may represent an important new class of "signature" sequence. We were unable to find any proteins homologous in sequence to the 16-kDa 4-hydroxybenzoate-coenzyme A thioesterase encoded by ORF3. Analysis of the chemistry and function of the proteins found to be structurally related to the 4-CBA:coenzyme A ligase and the 4-CBA-coenzyme A dehalogenase supports the proposal that they evolved from a beta-oxidation pathway.  相似文献   

12.
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of catechol 2,3-dioxygenases (4ECR1 and 4ECR6) able to oxidize 4-ethylcatechol, one mutant (3MCS) which exhibits only weak activity toward 3-methylcatechol but retained the ability to cleave catechol and 4-methylcatechol, and one phenotypic revertant of 3MCS (3MCR) which had regained the ability to oxidize 3-methylcatechol were characterized by determining their Km and partition ratio (the ratio of productive catalysis to suicide catalysis). The amino acid substitutions in the four mutant enzymes were also identified by sequencing their structural genes. Wild-type catechol 2,3-dioxygenase was inactivated during the catalysis of 4-ethylcatechol and thus had a low partition ratio for this substrate, whereas the two mutant enzymes, 4ECR1 and 4ECR6, had higher partition ratios for it. Similarly, mutant enzyme 3MCS had a lower partition ratio for 3-methylcatechol than that of 3MCR. Molecular oxygen was required for the inactivation of the wild-type enzyme by 4-ethylcatechol and of 3MCS by 3-methylcatechol, and the inactivated enzymes could be reactivated by incubation with FeSO4 plus ascorbic acid. The enzyme inactivation is thus most likely mechanism based and occurred principally by oxidation and/or removal of the ferrous ion in the catalytic center. In general, partition ratios for catechols lower than 18,000 did not support bacterial growth. A possible meaning of the critical value of the partition ratio is discussed.  相似文献   

13.
Lee JY  Park HS  Kim HS 《Journal of bacteriology》1999,181(9):2953-2957
We identified and characterized a methyl transfer activity of the toluate cis-dihydrodiol (4-methyl-3,5-cyclohexadiene-cis-1, 2-diol-1-carboxylic acid) dehydrogenase of the TOL plasmid pWW0 towards toluene cis-dihydrodiol (3-methyl-4,5-cyclohexadiene-cis-1, 2-diol). When the purified enzyme from the recombinant Escherichia coli containing the xylL gene was incubated with toluene cis-dihydrodiol in the presence of NAD+, the end products differed depending on the presence of adenosylcobalamin (coenzyme B12). The enzyme yielded catechol in the presence of adenosylcobalamin, while it gave 3-methylcatechol in the absence of the cofactor. Adenosylcobalamin was transformed to methylcobalamin as a result of the enzyme reaction, which indicates that the methyl group of the substrate was transferred to adenosylcobalamin. Other derivatives of the cobalamin such as aquo (hydroxy)- and cyanocobalamin did not mediate the methyl transfer reaction. The dehydrogenation and methyl transfer reactions were assumed to occur concomitantly, and the methyl transfer reaction seemed to depend on the dehydrogenation. To our knowledge, the enzyme is the first dehydrogenase that shows a methyl transfer activity as well.  相似文献   

14.
Rhodococcus sp. strain DK17 is known to metabolize o-xylene and toluene through the intermediates 3,4-dimethylcatechol and 3- and 4-methylcatechol, respectively, which are further cleaved by a common catechol 2,3-dioxygenase. A putative gene encoding this enzyme (akbC) was amplified by PCR, cloned, and expressed in Escherichia coli. Assessment of the enzyme activity expressed in E. coli combined with sequence analysis of a mutant gene demonstrated that the akbC gene encodes the bona fide catechol 2,3-dioxygenase (AkbC) for metabolism of o-xylene and alkylbenzenes such as toluene and ethylbenzene. Analysis of the deduced amino acid sequence indicates that AkbC consists of a new catechol 2,3-dioxygenase class specific for methyl-substituted catechols. A computer-aided molecular modeling studies suggest that amino acid residues (particularly Phe177) in the beta10-beta11 loop play an essential role in characterizing the substrate specificity of AkbC.  相似文献   

15.
Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas sp. was isolated from nitrobenzene-contaminated soil and groundwater on 2-nitrotoluene as the sole source of carbon, energy, and nitrogen. Bacterial cells growing on 2-nitrotoluene released nitrite into the growth medium. The isolate also grew on 3-methylcatechol, 4-methylcatechol, and catechol. 2-Nitrotoluene, 3-methylcatechol, and catechol stimulated oxygen consumption by intact cells regardless of the growth substrate. Crude extracts from the isolate contained catechol 2,3-dioxygenase and 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase activity. The results suggest that 2-nitrotoluene is subject to initial attack by a dioxygenase enzyme that forms 3-methylcatechol with concomitant release of nitrite. The 3-methylcatechol is subsequently degraded via the meta ring fission pathway.  相似文献   

16.
1. A cell-free system, prepared from Pseudomonas N.C.I.B. 9340 grown on 4-chloro-2-methylphenoxyacetate (MCPA) was shown to catalyse the reaction sequence: 5-chloro-3-methylcatechol --> cis-cis-gamma-chloro-alpha-methylmuconate --> gamma-carboxymethylene-alpha-methyl-Delta(alphabeta)-butenolide --> gamma-hydroxy-alpha-methylmuconate. 2. The activity of the three enzymes involved in these reactions was completely resolved and the lactonizing and delactonizing enzymes were separated. 3. This part of the metabolic pathway of 4-chloro-2-methylphenoxyacetate is thus confirmed for this bacterium. 4. The ring-fission oxygenase required Fe(2+) or Fe(3+) and reduced glutathione for activity; the lactonizing enzyme is stimulated by Mn(2+), Mg(2+), Co(2+) and Fe(2+); no cofactor requirement could be demonstrated for the delactonizing enzyme. 5. cis-cis-gamma-Chloro-alpha-methylmuconic acid was isolated and found to be somewhat unstable, readily lactonizing to gamma-carboxymethylene-alpha-methyl-Delta(alphabeta)-butenolide. 6. Enzymically the lactonization appears to be a single-step dehydrochlorinase reaction.  相似文献   

17.
The anaerobic degradation of 4-hydroxybenzoate is initiated by the formation of 4-hydroxybenzoyl coenzyme A, with the next step proposed to be a dehydroxylation to benzoyl coenzyme A, the starting compound for a central pathway of aromatic compound ring reduction and cleavage. Three open reading frames, divergently transcribed from the 4-hydroxybenzoate coenzyme A ligase gene, hbaA, were identified and sequenced from the phototrophic bacterium Rhodopseudomonas palustris. These genes, named hbaBCD, specify polypeptides of 17.5, 82.6, and 34.5 kDa, respectively. The deduced amino acid sequences show considerable similarities to a group of hydroxylating enzymes involved in CO, xanthine, and nicotine metabolism that have conserved binding sites for [2Fe-2S] clusters and a molybdenum cofactor. Cassette disruption of the hbaB gene yielded a mutant that was unable to grow anaerobically on 4-hydroxybenzoate but grew normally on benzoate. The hbaB mutant cells did not accumulate [14C]benzoyl coenzyme A during short-term uptake of [14C]4-hydroxybenzoate, but benzoyl coenzyme A was the major radioactive metabolite formed by the wild type. In addition, crude extracts of the mutant failed to convert 4-hydroxybenzoyl coenzyme A to benzoyl coenzyme A. This evidence indicates that the hbaBCD genes encode the subunits of a 4-hydroxybenzoyl coenzyme A reductase (dehydroxylating). The sizes of the specified polypeptides are similar to those reported for 4-hydroxybenzoyl coenzyme A reductase isolated from the denitrifying bacterium Thauera aromatica. The amino acid consensus sequence for a molybdenum cofactor binding site is in HbaC. This cofactor appears to be an essential component because anaerobic growth of R. palustris on 4-hydroxybenzoate, but not on benzoate, was retarded unless 0.1 microM molybdate was added to the medium. Neither tungstate nor vanadate replaced molybdate, and tungstate competitively inhibited growth stimulation by molybdate.  相似文献   

18.
Effects of the substrate and the coenzyme on the crystalline yeast phosphoglyceric acid mutase activity have been investigated. Lineweaver-Burk plots at different concentrations of the substrate (d-3-phosphoglyceric acid: 3×10?7 to 8×10?3m) and the coenzyme (d-2, 3-diphosphoglyceric acid: 8×10?7 to 10?5m) change in such a way to indicate the involvement of an enzyme-substrate-coenzyme ternary complex as an active intermediate in the enzymic reaction process. It is concluded that the reaction catalyzed by the yeast enzyme follows the sequential pathway and that a phosphorylated enzyme does not participate as an obligatory intermediate in the reaction mechanism, if it occurs. Kinetic studies indicate Km values of 6×10?4m for d-3-phosphoglyceric acid and 8×10?7m for d-2, 3-diphosphoglyceric acid. The substrate is a competitive inhibitor of the coenzyme with a Ksi (inhibition constant) of 3.2×10?3m. The coenzyme inhibition is not observed at concentration tested. A kinetic treatment to determine the mechanism of the enzyme reaction from the experimental data which are obtaind in the range of inhibitory substrate concentrations is presented.  相似文献   

19.
An extradiol dioxygenase was cloned from the naphthalenesulfonate-degrading bacterial strain BN6 by screening a gene bank for colonies with 2,3-dihydroxybiphenyl dioxygenase activity. DNA sequence analysis of a 1,358-bp fragment revealed an open reading frame of only 486 bp. This is the smallest gene encoding an extradiol dioxygenase found until now. Expression of the gene in a T7 expression vector enabled purification of the enzyme. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the protein was a dimer with a subunit size of 21.7 kDa. The enzyme oxidized 2,3-dihydroxybiphenyl, 3-isopropylcatechol, 3- and 4-chlorocatechol, and 3- and 4-methylcatechol. Since the ability to convert 3-chlorocatechol is an unusual characteristic for an extradiol-cleaving dioxygenase, this reaction was analyzed in more detail. The deduced amino-terminal amino acid sequence differed from the corresponding sequence of the 1,2-dihydroxynaphthalene dioxygenase, which had been determined earlier from the enzyme purified from this strain. This indicates that strain BN6 carries at least two different extradiol dioxygenases.  相似文献   

20.
A new assay for 3-hydroxy-3-methylglutaryl CoA reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) is based upon the measurement of released coenzyme A (SH) during the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonate. Coenzyme A was measured in the presence of dithiothreitol, required for activity, by reaction with 5,5'-dithiobis(2-nitrobenzoic acid). Sodium arsenite forms a complex with the dithiol, but not with monothiols. Thus, reduced coenzyme A reacts instantaneously with the reagent and dithiothreitol reacts slowly. The absorbance due to the coenzyme A-5,5'-dithiobis(2-nitrobenzoic acid) reaction is determined by extrapolating the linear (dithiol) absorbance-time curve to the time of addition of the reagent. After subtraction of control absorbance (deletion of NADPH), the concentration of CoA-SH is calculated from epsilon(max) = 1.36 x 10(4) at 412 nm. The method of protein removal and reduction of sulfhydryl groups on the enzyme are critical. This method provides an immediate assay. Recovery of reduced coenzyme A was 98.7%. The assay is applicable for microsomes or purified enzyme and has an effective range of 0.5-50 nmoles of coenzyme A. It was applied to kinetic measurement of the pigeon liver microsomal enzyme reaction. The apparent K(m) value for 3-hydroxy-3-methylglutaryl CoA was 1.75 x 10(-5) M, and for NADPH the value was 6.81 x 10(-4) M. This method was compared with the dual-label method at high and low levels of activity. The data were not statistically different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号