首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144−), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45−) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level.  相似文献   

2.
In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.  相似文献   

3.

Background

The haematopoietic lineages with leukaemia lineages are considered in this paper. In particular, we mainly consider that haematopoietic lineages are tightly controlled by negative feedback inhibition of end-product. Actually, leukemia has been found 100 years ago. Up to now, the exact mechanism is still unknown, and many factors are thought to be associated with the pathogenesis of leukemia. Nevertheless, it is very necessary to continue the profound study of the pathogenesis of leukemia. Here, we propose a new mathematical model which include some negative feedback inhibition from the terminally differentiated cells of haematopoietic lineages to the haematopoietic stem cells and haematopoietic progenitor cells in order to describe the regulatory mechanisms mentioned above by a set of ordinary differential equations. Afterwards, we carried out detailed dynamical bifurcation analysis of the model, and obtained some meaningful results.

Results

In this work, we mainly perform the analysis of the mathematic model by bifurcation theory and numerical simulations. We have not only incorporated some new negative feedback mechanisms to the existing model, but also constructed our own model by using the modeling method of stem cell theory with probability method. Through a series of qualitative analysis and numerical simulations, we obtain that the weak negative feedback for differentiation probability is conducive to the cure of leukemia. However, with the strengthening of negative feedback, leukemia will be more difficult to be cured, and even induce death. In contrast, strong negative feedback for differentiation rate of progenitor cells can promote healthy haematopoiesis and suppress leukaemia.

Conclusions

These results demonstrate that healthy progenitor cells are bestowed a competitive advantage over leukaemia stem cells. Weak g1, g2, and h1 enable the system stays in the healthy state. However, strong h2 can promote healthy haematopoiesis and suppress leukaemia.
  相似文献   

4.
There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.  相似文献   

5.
Demodex mites are a group of hair follicle and sebaceous gland-dwelling species. The species of these mites found on humans are arguably the animals with which we have the most intimate interactions. Yet, their prevalence and diversity have been poorly explored. Here we use a new molecular method to assess the occurrence of Demodex mites on humans. In addition, we use the 18S rRNA gene (18S rDNA) to assess the genetic diversity and evolutionary history of Demodex lineages. Within our samples, 100% of people over 18 years of age appear to host at least one Demodex species, suggesting that Demodex mites may be universal associates of adult humans. A phylogenetic analysis of 18S rDNA reveals intraspecific structure within one of the two named human-associated Demodex species, D. brevis. The D. brevis clade is geographically structured, suggesting that new lineages are likely to be discovered as humans from additional geographic regions are sampled.  相似文献   

6.
The African origin of hominins suggests that Taenia spp. in African carnivores are evolutionarily related to the human-infecting tapeworms Taenia solium, Taenia saginata and Taenia asiatica. Nevertheless, the hypothesis has not been verified through molecular phylogenetics of Taenia. This study aimed to perform phylogenetic comparisons between Taenia spp. from African hyenas and the congeneric human parasites. During 2010–2013, 233 adult specimens of Taenia spp. were collected from 11 spotted hyenas in Ethiopia. A screening based on short DNA sequences of the cytochrome c oxidase subunit 1 gene classified the samples into four mitochondrial lineages designated as I–IV. DNA profiles of nuclear genes for DNA polymerase delta (pold) and phosphoenolpyruvate carboxykinase (pepck) showed that lineages II and III can be assigned as two independent species. Common haplotypes of pold and pepck were frequently found in lineages I and IV, suggesting that they constitute a single species. Morphological observations suggested that lineage II is Taenia crocutae, but the other lineages were morphologically inconsistent with known species, suggesting the involvement of two new species. A phylogenetic tree of Taenia spp. was reconstructed by the maximum likelihood method using all protein-coding genes of their mitochondrial genomes. The tree clearly demonstrated that T. crocutae is sister to T. saginata and T. asiatica, whereas T. solium was confirmed to be sister to the brown bear tapeworm, Taenia arctos. The tree also suggested that T. solium and T. arctos are related to two species of Taenia in hyenas, corresponding to lineages I + IV and III. These results may partially support the African origin of human-infecting Taenia spp., but there remains a possibility that host switching of Taenia to hominins was not confined to Africa. Additional taxa from African carnivores are needed for further testing of the “Out of Africa” hypothesis of Taenia in humans.  相似文献   

7.
8.
The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.  相似文献   

9.
UCB (human umbilical cord blood) contains cells able to differentiate into non‐haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic‐like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM‐CSF (granulocyte–macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT‐PCR and immunocytochemistry. The results show a dramatic expansion (>150‐fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl‐4, sox‐2, oct‐3/4 andc‐myc), nestin, and pancreatic markers such as pax‐4, ngn‐3, pdx‐1 and syt‐1 (that is regulated by pdx‐1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application.  相似文献   

10.
The major cause of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus type 1 (HIV-1). We have been using evolutionary comparisons to trace (i) the origin(s) of HIV-1 and (ii) the origin(s) of AIDS. The closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in west central Africa. Phylogenetic analyses have revealed the origins of HIV-1: chimpanzees were the original hosts of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species transmissions to humans and one or two of those transmissions may have been via gorillas. However, SIVs are primarily monkey viruses: more than 40 species of African monkeys are infected with their own, species-specific, SIV and in at least some host species, the infection seems non-pathogenic. Chimpanzees acquired from monkeys two distinct forms of SIVs that recombined to produce a virus with a unique genome structure. We have found that SIV infection causes CD4+ T-cell depletion and increases mortality in wild chimpanzees, and so the origin of AIDS is more ancient than the origin of HIV-1. Tracing the genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then humans may provide insights into the causes of the pathogenicity of these viruses.  相似文献   

11.
Blood microRNA (miRNA) levels have been associated with and shown to participate in disease pathophysiology. However, the hematopoietic cell of origin of blood miRNAs and the individual blood cell miRNA profiles are poorly understood. We report the miRNA content of highly purified normal hematopoietic cells from the same individuals. Although T-cells, B-cells and granulocytes had the highest miRNA content per cell, erythrocytes contributed more cellular miRNA to the blood, followed by granulocytes and platelets. miRNA profiling revealed different patterns and different expression levels of miRNA specific for each lineage. miR-30c-5p was determined to be an appropriate reference normalizer for cross-cell qRT-PCR comparisons. miRNA profiling of 5 hematopoietic cell lines revealed differential expression of miR-125a-5p. We demonstrated endogenous levels of miR-125a-5p regulate reporter gene expression in Meg-01 and Jurkat cells by (1) constructs containing binding sites for miR-125a-5p or (2) over-expressing or inhibiting miR-125a-5p. This quantitative analysis of the miRNA profiles of peripheral blood cells identifies the circulating hematopoietic cellular miRNAs, supports the use of miRNA profiles for distinguishing different hematopoietic lineages and suggests that endogenously expressed miRNAs can be exploited to regulate transgene expression in a cell-specific manner.  相似文献   

12.
The epigenetic regulator Bmi1 is key in haematopoietic stem cells, and its inactivation leads to defects in haematopoiesis. Parathyroid hormone (PTH), an important modulator of bone homeostasis, also regulates haematopoiesis, so we asked whether PTH administration improves bone marrow microenvironment and rescues the haematopoietic defects in Bmi1-null mice. The mice were treated with PTH1-34 (containing the first 34 residues of mature PTH), an anabolic drug currently used for treating osteoporosis, and compared with the vehicle-treated Bmi1 -/- and wild-type littermates in terms of skeletal and haematopoietic phenotypes. We found that the administration significantly increased all parameters related to osteoblastic bone formation and significantly reduced the adipocyte number and PPARγ expression. The bone marrow cellularity, numbers of haematopoietic progenitors and stem cells in the femur, and numbers of lymphocytes and other white blood cells in the peripheral blood all increased significantly when compared to vehicle-treated Bmi1-/- mice. Moreover, the number of Jagged1-positive cells and percentage of Notch intracellular domain-positive bone marrow cells and protein expression levels of Jagged1 and NICD in bone tissue were also increased in Bmi1 -/- mice upon PTH1-34 administration,whereas the up-regulation of PTH on both Notch1 and Jagged1 gene expression was blocked by the Notch inhibitor DAPT administration. These results thus indicate that PTH administration activates the notch pathway and partially rescues haematopoietic defects in Bmi1-null mice, further suggesting that haematopoietic defects in the animals are not only a result of reduced self-renewal of haematopoietic stem cells but also due to impaired bone marrow microenvironment.  相似文献   

13.
The success of a robust vertebrate inflammatory response is in part because of the migratory potential of its haematopoietic components. Once these cells converge at an inflammatory site, they interact with each other as well as non‐immune tissues and infectious agents to help manage both the scale and the duration of any ensuing response. Exactly how these blood cells, that constitute the innate and adaptive immune systems, contribute to such immune responses remain largely unknown. Traditionally, assessing these contributions relied upon histological analysis of fixed tissue sections complemented with in vitro dynamic data. Although informative, translating results from these studies into the multicellular whole‐animal setting remain difficult. Recently, non‐invasive live imaging of the immune system in animal models is providing significant insights into how immune cells function within their intact natural environment. Although the majority of these studies have been conducted within mice, another vertebrate, the zebrafish Danio rerio is being recognized as an ideal platform for non‐invasive live imaging applications. The optical transparency, rapid development, genetic tractability and highly conserved innate and adaptive immune systems of this well‐established developmental model have been exploited in a number of recent studies evaluating the immunocompetence of fluorescently tagged blood cells. In addition, similar live imaging studies are helping to dissect the ontogeny of blood‐cell development by tracking various haematopoietic precursor cells to assess their contribution to different blood lineages. This review will examine some recent advances that have helped D. rerio emerge as a live imaging platform as well as its potential to offer valuable insights into the genetics behind diseases associated with immune cell dysfunction.  相似文献   

14.
Recent fossil discoveries have demonstrated that Africa and Asia were epicentres for the origin and/or early diversification of the major living primate lineages, including both anthropoids (monkeys, apes and humans) and crown strepsirhine primates (lemurs, lorises and galagos). Competing hypotheses favouring either an African or Asian origin for anthropoids rank among the most hotly contested issues in paleoprimatology. The Afrocentric model for anthropoid origins rests heavily on the >45 Myr old fossil Algeripithecus minutus from Algeria, which is widely acknowledged to be one of the oldest known anthropoids. However, the phylogenetic position of Algeripithecus with respect to other primates has been tenuous because of the highly fragmentary fossils that have documented this primate until now. Recently recovered and more nearly complete fossils of Algeripithecus and contemporaneous relatives reveal that they are not anthropoids. New data support the idea that Algeripithecus and its sister genus Azibius are the earliest offshoots of an Afro–Arabian strepsirhine clade that embraces extant toothcombed primates and their fossil relatives. Azibius exhibits anatomical evidence for nocturnality. Algeripithecus has a long, thin and forwardly inclined lower canine alveolus, a feature that is entirely compatible with the long and procumbent lower canine included in the toothcomb of crown strepsirhines. These results strengthen an ancient African origin for crown strepsirhines and, in turn, strongly challenge the role of Africa as the ancestral homeland for anthropoids.  相似文献   

15.
Diverse types of blood cell (lineages) are produced from rare haematopoietic stem cells that reside in the bone marrow. This process, known as haematopoiesis, provides a valuable model for examining how genetic programs are established and executed in vertebrates, and also how homeostasis of blood formation is altered in leukaemias. So, how does an apparently small group of critical lineage-restricted nuclear regulatory factors specify the diversity of haematopoietic cells? Recent findings not only indicate how this may be achieved but also show the extraordinary plasticity of tissue stem cells in vivo.  相似文献   

16.
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites'' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.  相似文献   

17.
Previous analyses of the murine and human TSSC6 (also known as Phemx) proteins were not carried out using the full length sequence. Using 5′-RACE and cDNA library screening, we identified an additional 5′ sequence for both the murine Tssc6 cDNA and its human homologue TSSC6. This novel sequence encodes a 5′ exon encoding an in frame, upstream start codon, an N-terminal cytoplasmic domain and a transmembrane domain. The deduced, and now full length, murine and human TSSC6 proteins contained four hydrophobic regions together with other features characteristic of the tetraspanin superfamily. Computational analyses of the full length sequences show that TSSC6 is a genuine, albeit relatively divergent member of this superfamily. Using RNA from a number of mouse tissues, we identified seven splice variants of Tssc6. Splice variants of the human gene were also detected. Tssc6 expression was detected early in embryogenesis in primitive blood cells and was confined to haematopoietic organs in the adult mouse. Tssc6 expression was detected in many haematopoietic cell lines and was highest in cell lines of the erythroid lineage.  相似文献   

18.
Recently, the lineage hTURDUS2 of Haemoproteus minutus (Haemosporida, Haemoproteidae) was reported to cause mortality in captive parrots. This parasite lineage is widespread and prevalent in the blackbird Turdus merula throughout its entire distribution range. Species identity of other closely related lineages recently reported in dead parrots remains unclear, but will be important to determine for a better understanding of the epidemiology of haemoproteosis. Using polymerase chain reaction (PCR)-based and microscopic methods, we analyzed 265 blood samples collected from 52 species of wild birds in Eurasia (23 samples from Kamchatka Peninsula, 73 from Sakhalin Island, 150 from Ekaterinburg and 19 from Irkutsk regions of Russia). Single infections of the lineages hTURDUS2 (hosts are redwing Turdus iliacus and fieldfare Turdus pilaris), hTUPHI1 (song thrush Turdus philomelos) and hTUCHR01 (fieldfare, redwing, song thrush and brown-headed thrush Turdus chysolaus) were detected. We identified species of these haemoproteids based on morphology of their blood stages and conclude that these lineages belong to H. minutus, a widespread parasite of different species of thrushes (genus Turdus), which serve as reservoir hosts of this haemoproteid infection. Phylogenetic analysis shows that the lineages hTURDUS2, hTUCHR01 and hTUPHI1 of H. minutus are closely related to Haemoproteus pallidus (lineages hPFC1 and hCOLL2), Haemoproteus pallidulus (hSYAT03), and Haemoproteus sp. (hMEUND3); genetic distance among their mitochondrial cytochrome b (cyt b) lineages is small (< 1% or < 4 nucleotides). All these blood parasites are different in many morphological characters, but are similar due to one feature, which is the pale staining of their macrogametocytes' cytoplasm with Giemsa. Because of the recent publications about mortality caused by the lineages hTUPHI1 and hTURDUS2 of H. minutus in captive parrots in Europe, H. minutus and the closely related H. pallidus and H. pallidulus are worth more attention as these are possible agents of haemoproteosis in exotic birds. The present study provides barcodes for molecular detection of different lineages of H. minutus, and extends information about the distribution of this blood parasite.  相似文献   

19.
Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily ‘modern’ lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically ‘modern’ MTBC lineages are more successful in terms of their geographical spread compared with the ‘ancient’ lineages. Interestingly, the global success of ‘modern’ MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host.  相似文献   

20.
Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell–cell fusion and are involved in the formation of a syncytium layer—the syncytiotrophoblast—at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival. Here we provide evidence that these “necessary” genes acquired “by chance” have a definite lifetime with diverse fates depending on the animal lineage, being both gained and lost in the course of evolution. Analysis of a retroviral envelope gene, the envV gene, present in primate genomes and belonging to the endogenous retrovirus type V (ERV-V) provirus, shows that this captured gene, which entered the primate lineage >45 million years ago, behaves as a syncytin in Old World monkeys, but lost its canonical fusogenic activity in other primate lineages, including humans. In the Old World monkeys, we show—by in situ analyses and ex vivo assays—that envV is both specifically expressed at the level of the placental syncytiotrophoblast and fusogenic, and that it further displays signs of purifying selection based on analysis of non-synonymous to synonymous substitution rates. We further show that purifying selection still operates in the primate lineages where the gene is no longer fusogenic, indicating that degeneracy of this ancestral syncytin is a slow, lineage-dependent, and multi-step process, in which the fusogenic activity would be the first canonical property of this retroviral envelope gene to be lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号