首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Fructans are fructose oligomers and polymers synthesized by a small number of plant and bacterial species and mainly function as reserve carbohydrates. The terminal fructosyl-fructose linkages can be degraded by fructan exohydrolases (FEHs), occurring in bacteria, fungi and fructan plants. Unexpectedly, it was found that FEHs also occur in non-fructan plants such as Beta vulgaris and Arabidopsis thaliana that apparently lack endogenous fructan substrates. FEHs might have defense-related roles acting on bacterial fructan-containing slimes or might act on minute (up to now undetected) amounts of fructans acting as signals in plants.  相似文献   

5.
6.
Patterns of herbivore browse at small scales, such as the rate of leaf consumption or plant preferences, drive the impact of herbivores on whole-plant processes, such as growth or survival, and subsequent changes in plant population structure. However, herbivore impacts are often non-linear, highly variable and context-dependent. Understanding the effect of herbivores on plant populations therefore requires a detailed understanding of the relationships that drive small-scale processes, and how these interact to generate dynamics at larger scales. We derive a mathematical model to predict annual rates of browse-induced tree mortality. We model individual plant mortality as a result of rates of foliage production, turnover and herbivore intake, and extend the model to the population scale by allowing for between-tree variation in levels of herbivore browse. The model is configurable for any broadleaved tree species subject to vertebrate or invertebrate browse, and is designed to be parameterized from field data typically collected as part of browse damage assessments. We parameterized and tested the model using data on foliage cover and browse damage recorded on kamahi trees (Weinmannia racemosa) browsed by possums (Trichosurus vulpecula) in New Zealand forests. The model replicated observed patterns of tree mortality at 12 independent validation sites with a wide range of herbivore densities and browse damage. The model reveals two key thresholds; in plant foliar cover, indicating when individual trees may be at high risk from browse-induced mortality, and in herbivore intake, leading to high rates of mortality across the whole population.  相似文献   

7.
Maize(Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid(ABA),ethylene(ET), and jasmonic acid(JA), together with reactive oxygen species(ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which m...  相似文献   

8.
Hydroxamate siderophores have been found to alleviate Al toxicity in bacteria. In Poaceae plants cyclic hydroxamates, like DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) and its derivatives have mostly been studied in relation to either defence against insects or allelopathy. In this study the influence of Al on concentrations of these benzoxazinoids (Bx) in root tips, whole roots and root xylem exudates of Zea mays L. varieties differing in Al resistance was analyzed by HPLC-MS. Aluminium resistant maize variety Sikuani maintained considerably higher Bx levels in root tips than the Al sensitive variety Bakero. In vitro binding of Al to DIMBOA was shown by fluorescence quenching. Addition of DIMBOA to Al-containing nutrient solution protected the sensitive maize against Al toxicity as shown by bioassays using callose and haematoxylin staining of root tips as stress indicators. This is the first study showing that Bx can detoxify Al in solution. Tissue analysis data provide first, circumstantial, support for a role of Bx in defence against Al toxicity also in planta.  相似文献   

9.
Plant-pathogen interaction induces a complex host response that coordinates various signaling pathways through multiple signal molecules. Besides the well-documented signal molecules salicylic acid (SA), ethylene and jasmonic acid, auxin is emerging as an important player in this response. We recently characterized an Arabidopsis activation-tagged mutant, bud1, in which the expression of the MAP kinase kinase 7 (AtMKK7) gene is increased. The bud1 mutant plants accumulate elevated levels of SA and display constitutive pathogenesis-related (PR) gene expression and enhanced resistance to pathogens. Additionally, increased expression of AtMKK7 in the bud1 mutant causes deficiency in polar auxin transport, indicating that AtMKK7 negatively regulates auxin signaling. Based on these results, we hypothesized that AtMKK7 may serve as a crosstalk point between auxin signaling and defense responses. Here we show that increased expression of AtMKK7 in bud1 results in a significant reduction in free auxin (indole-3-acetic acid) levels in the mutant plants. We propose three possible mechanisms to explain how AtMKK7 coordinates the growth hormone auxin and the defense signal molecule SA in the bud1 mutant plants. We suggest that AtMKK7 may play a role in cell death and propose that AtMPK3 and AtMPK6 may function downstream of AtMKK7.Key words: Arabidopsis, MAP kinase kinase 7, auxin signaling, defense responses, crosstalkPathogen invasion of a plant induces multiple physiological changes at the site of infection, including the accumulation of reactive oxygen species, nitric oxide and salicylic acid (SA).16 Jasmonic acid (JA) and ethylene (ET) are also produced in response to pathogen infection.711 Numerous reports have documented that SA, JA and ET work synergistically or antagonistically to fine-tune plant defense responses, based on a multitude of environmental, host and pathogen genetic factors that vary depending on the pathogen-host combinations.4,12The growth hormone auxin may also play an important role in plant defense responses. Many plant-pathogenic microorganisms have the ability to produce indole-3-acetic acid (IAA),13 which is important for the pathogenicity for some pathogens.1416 In the Arabidopsis-Xanthomonas campestris pv. campestris (Xcc) compatible interaction, Xcc triggers IAA synthesis in the host plants.17 Exogenous treatment of plants with the auxin analogs, NAA and 2,4-D, leads to disease susceptibility.18 A flagellin-derived-peptid e-induced microRNA (miRNA) was found to negatively regulate messenger RNAs for the F-box auxin receptors TIR1, AFB2 and AFB3, to repress auxin signaling, resulting in significantly enhanced host resistance.18 These results suggest that auxin likely functions as a virulence factor to suppress host defense.We previously identified an Arabidopsis activation-tagged mutant bud1 from a transgenic population generated by a sense/antisense RNA expression system.19 Further characterization indicated that bud1 is a semidominant mutant, in which the expression of the Arabidopsis MAP kinase kinase 7 (AtMKK7) gene is increased.20 The increased expression of AtMKK7 in bud1 causes deficiency in auxin transport, whereas reducing mRNA levels of AtMKK7 by antisense RNA expression leads to enhancement of auxin transport, indicating that AtMKK7 negatively regulates polar auxin transport (PAT).20 Recently, we have shown that the bud1 mutant plants accumulate elevated levels of SA and exhibit constitutive pathogenesis-related (PR) gene expression and enhanced resistance to both the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326 and the oomycete pathogen Hyaloperonospora parasitica Noco2.21 Reducing mRNA levels of AtMKK7 by antisense RNA expression not only compromises basal resistance but also blocks the induction of systemic acquired resistance (SAR), demonstrating that AtMKK7 is a positive regulator required for both basal resistance and SAR.21 Furthermore, we found that the free IAA levels in the bud1 mutant plants were significantly reduced, compared to those in wild-type plants (Fig. 1A). All these results taken together suggest that AtMKK7 may positively regulate SA signaling and negatively regulate auxin signaling.Open in a separate windowFigure 1(A) Free IAA levels in wild type (WT) and bud1 mutant plants. Thirty-day-old soil grown plants were used for free IAA measurement. (B) A schematic representation of three possible mechanisms through which MKK7 regulates host responses after pathogen invasion.Given that SA is a positive regulator of defense responses, whereas auxin is likely a negative regulator of defense responses, we propose three possible mechanisms through which AtMKK7 coordinates the growth hormone auxin and the defense signal molecule SA in the bud1 mutant plants (Fig. 1B): (1) AtMKK7 induces SA accumulation, which suppresses auxin signaling, leading to increased defense responses; (2) AtMKK7 independently induces SA accumulation and suppresses auxin signaling; (3) AtMKK7 suppresses auxin signaling, which relieves the repression of SA signaling by auxin, resulting in SA accumulation.We could test the hypotheses using different approaches. We can examine whether the expression of YUC1, YUC2, YUC4 and YUC6, genes that have been suggested to play essential roles in auxin biosynthesis,22 is altered in the bud1 mutant. We can also analyze the expression of YUC1, YUC2, YUC4 and YUC6, as well as the levels of free IAA in the double mutant bud1sid2 (sid2 is a SA deficient mutant) to test whether IAA biosynthesis is derepressed in the double mutant. Furthermore, polar auxin transport in the bud1sid2 plants should be determined. Finally, we can test whether exogenous application of auxin is able to suppress AtMKK7-induced constitutive defense responses in the bud1 mutant, including elevated levels of SA, constitutive PR gene expression and enhanced resistance to Psm ES4326 and H. parasitica Noco2.AtMKK7 belongs to the Group D of plant MAPKKs.23 Functions of two other members of this group, LeMKK4 and NbMKK1, have been described.24,25 LeMKK4 and NbMKK1 are orthologs of AtMKK7 in tomato and Nicotiana benthamiana, respectively. When overexpressed in leaves, wild-type LeMKK4 elicits cell death in both tomato and N. benthamiana.24 Overexpression of wild-type NbMKK1 also causes cell death on N. benthamiana leaves.25 We expected that overexpression of AtMKK7 would also result in cell death. However, neither increased expression of AtMKK7 in the bud1 mutant plants, nor overexpression of wild-type AtMKK7 from the dexamethasone-inducible promoter causes cell death.21 This is probably because the expression levels of AtMKK7 in these plants were below the threshold to induce cell death. Consistently, ectopic and constitutive expression of AtMKK7 driven by the cauliflower mosaic virus (CaMV) 35S promoter in wild-type plants leads to lethality of the transgenic plants.20 Therefore, to characterize the function of AtMKK7 in cell death, transgenic plants expressing a constitutively active form of AtMKK7 (AtMKK7S193A/S199D) from the dexamethasone-inducible promoter will be useful.What MAPK(s) acts downstream of AtMKK7? LeMKK4 directly phosphorylates LeMPK1, LeMPK2 and LeMPK3 in vitro, and activates LeMPK2 and LeMPK3 when expressed in tomato leaves,24 whereas NbMKK1 activates NbSIPK when expressed in N. benthamiana leaves.25 LeMPK2 and LeMPK3 are tomato orthologs of the well-studied tobacco proteins SIPK (salicylic acid-induced protein kinase) and WIPK (wound-induced protein kinase),26,27 respectively. The Arabidopsis orthologs of SIPK and WIPK are AtMPK6 and AtMPK3, respectively. Based on previous in-gel kinase assay results,21 we predict that both AtMPK3 and AtMPK6 may function downstream of AtMKK7. Characterization of double mutants bud1atmpk3 and bud1atmpk6, as well as atmpk3 and atmpk6 mutant plants expressing the constitutively active form of AtMKK7 from the dexamethasone-inducible promoter will shed light on this question.  相似文献   

10.
Nässel DR  Wegener C 《Peptides》2011,32(6):1335-1355
Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.  相似文献   

11.
Between-group antagonism or territoriality in primates may serve two different but compatible functions: resource defense or mate defense. Females are expected to be involved more strongly in the first, males in the second. The resource defense hypothesis predicts that home range overlap should decrease as defensibility and population density increase, and that females should be involved in hostile between-group interactions. The mate defense hypothesis predicts that between-group relations should be hostile and that males should take the primary role in antagonistic encounters. In a comparative study of 12 populations of 6 Presbytis species in Southeast Asia, we found support for the mate defense hypothesis; only males produce loud calls, between-group antagonism is entirely a male affair, and neither defensibility nor population density determine spatial exclusivity or the level of antagonism. We discuss the differences between our findings and traditional interpretations of territorial behavior.  相似文献   

12.
Domestication is predicted to reduce resistance of agricultural crops against insect herbivores; however, its impact on herbivores with different feeding modes and evolutionary histories needs investigation. To this end, we conducted greenhouse experiments to explore the effects of domestication of blueberries (Vaccinium corymbosum), a crop native to North America, on the performance of two chewing herbivores [the native Sparganothis fruitworm (Sparganothis sulfureana (Clemens)) and non-native gypsy moth (Lymantria dispar L.)], and one piercing-sucking herbivore [the blueberry aphid (Illinoia azaleae (Mason))]. Lymantria dispar performed better (i.e., larvae gained more mass, damaged more leaves, and had greater survival) on cultivated V. corymbosum than on its wild counterpart. In contrast, domestication had no impact on the native S. sulfureana larval mass, consumption, and survivorship. Domestication increased survivorship, but not offspring production, of the aphid I. azaleae. To examine changes in plant chemistry due to domestication, we measured phenolic and nutrient (macro- and micro-elements) content in wild and cultivated V. corymbosum leaves. Although there were no differences in total phenolic content, two compounds were absent, while two were at lower and one at higher concentration in domesticated than in wild plants. Wild V. corymbosum leaves had higher amounts of phosphorus, sulfur, and sodium than cultivated leaves; the opposite was found for aluminum. While our findings provide support for the ‘plant domestication-reduced defense’ hypothesis, the effects of domestication were dependent on feeding modes and adaptations of the herbivores such that the non-native chewing species was more positively affected than the chewing and the piercing-sucking natives.  相似文献   

13.
14.
Sphingosine 1-phosphate (S1P)-metabolizing enzymes regulate the level of bioactive sphingolipids that have curative potential. Recently, S1P-metabolizing enzymes such as sphingosine kinase 1 and S1P lyase were shown to regulate influenza virus replication and the virus-induced cytopathogenicity. The mechanism appeared to employ a JAK/STAT type I interferon signaling pathway that induces anti-viral status. Further, sphingosine analogs altered cytokine responses upon influenza virus infection. This article focuses on recent discoveries about the sphingolipid system that influences on host protection from viral virulence and the involvement of cytokine signaling in its underlying mechanisms. Deciphering the steps of this pathway could help us envision how the modulation of sphingolipid metabolism can be applied as a therapeutic approach to overcome infectious diseases.  相似文献   

15.
Gauthier LR  Robbins SM 《Life sciences》2003,74(2-3):207-216
The Eph receptor tyrosine kinases (RTK) and their membrane-bound ligands, the ephrins, mediate cell-contact-dependent signaling events that control multiple aspects of metazoan embryonic development. The ephrins and their receptors regulate cell movement that is essential for forming and stabilizing the spatial organization of tissues and cell types. This includes the guidance of migrating cells or neuronal growth cones to specific targets. Although the biological responses mediated by the ephrin-Eph system were thought to be imparted by the Eph receptor via 'classical' RTK signaling pathways, there is now accumulating evidence that the ephrins are not merely ligands but have biological activity independent of the kinase activity of their cognate Eph receptor. This activity is commonly referred to as 'reverse' or 'bi-directional' signaling. Furthermore, ephrin-mediated signaling is restricted to specific membrane microdomains known as 'lipid rafts', which we believe imparts specificity to the extracellular signal. This review highlights the current data to support a role for lipid rafts in regulating aspects of ephrin-mediated signaling.  相似文献   

16.
Mechanisms of tolerance to herbivore damage:what do we know?   总被引:24,自引:2,他引:22  
Identifying mechanisms of tolerance to herbivore damage will facilitate attempts to understand the role of tolerance in the evolutionary and ecological dynamics of plants and herbivores. Investigations of the physiological and morphological changes that occur in plants in response to herbivore damage have identified several potential mechanisms of tolerance. However, it is unlikely that all physiological changes that occur following damage are tolerance mechanisms. Few studies have made direct comparisons between the expression of tolerance and the relative expression of putative mechanisms. I briefly review empirical evidence for some of the better-studied potential mechanisms, including increased photosynthetic activity, compensatory growth, utilization of stored reserves, and phenological delays. For each of these mechanisms I discuss reasons why the relationship between tolerance and these characters may be more complicated than it first appears. I conclude by discussing several empirical approaches, including herbivore manipulations, quantitative trait loci (QTL) analysis, and selection experiments, that will further our understanding of tolerance mechanisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Using the tomato plant, Lycopersicon esculentum L., and the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), we have demonstrated that insect herbivory induces a rapid decline in plant quality. This decline in plant quality manifests itself by a highly significant reduction in rate of larval growth on a medium containing foliage from insect-damaged as opposed to undamaged tomato plants. The induction of tomato proteinase inhibitors, as a result of larval feeding, is invoked as a factor that systemically reduces leaf quality.
Zusammenfassung Eine zentrale Theorie in der Erforschung von Insekten-Wirtspflanzen-Wechselbeziehungen ist, dass sich bestimmte natürlich vorkommende Pflanzeninhaltsstoffe in Pflanzen zur Abwehr herbivorer Insekten und anderer Parasiten entwickelt haben. Zur Zeit herrschende Überlegungen beinhalten auch das Konzept, dass herbivore Insekten das Potential besitzen, Veränderungen in der Abwehrund/oder Nahrungsqualität von Wirtspflanzen hervorzurufen, die den herbivoren Insekten schaden. Gegenwärtig is nur wenig über die Ursachen dieser von Insekten induzierten Veränderungen der Wirtspflanzenqualität bekannt. Jedoch werden häufig unterschiedliche Gehalte der Pflanzen an Phenolderivaten, Protein und/oder Proteinaseinhibitoren mit den Abwehrmechanismen in Zusammenhang gebracht. Diese Arbeit untersucht das Potential von Pflanzenproteinaseinhibitoren, als induzierbare Abwehr gegen herbivore Noctuidenlarven zu wirken.Tomatenpflanzen enthalten Proteinaseinhibitoren (PIs), die durch Verletzen der Pflanze induziert werden. Es besteht die Hypothese, dass diese Synthese von PIs einen Abwehrmechanismus gegen blattfressende Insekten darstellt. Diese Hypothese ist niemals angemessen in planta getestet worden und wird von uns anhand von Spodoptera exigua und Tomatenpflanzen, Lycopersicon esculentum, getestet.Wieterhin sollte festgestellt werden, ob eine Beziehung zwischen der PI-Konzentration im Blatt und dem Wachstum von Blattmaterial fressenden Larven besteht. Anstelle lebender Pflanzen wurde dazu eine feste, Blattmaterial enthaltende Diät (15% gefriergetrocknetes Blattmaterial angemischt in Agarlösung und Sorbinsäure) benutzt, was die Verwending einer unverletzten Kontrolle ermöglichte. Diese künstliche Diät wurde S. exigua angeboten. Die Ergebnisse des Fütterungsversuches (Fig. 2) zeigen, dass eine signifikante inverse Beziehung (r2=0.81, p=0.05) zwischen der PI-Konzentration im Blattgewebe und den mittleren Gewichten von Larven von S. exigua besteht. Nicht dargestellt ist die nicht signifikante Korrelation zwischen mittlerem Gewicht der Larven und den Gehalten an Blattprotein (r2=0.47, p>0.25) und Phenolderivaten (r2=0.50, p=0.25).Diese Ergebnisse veranlassen uns zu dem Rückschluss, dass Tomatenproteinaseinhibitoren als systemisch induzierbare antibiotische chemische Abwehr gegen herbivore Insekten wie Noctuidenlarven anzusehen sind, und dass PIs einen Faktor darstellen, der zur systemischen Reduktion der Blattqualität von Tomaten führt.
  相似文献   

18.
Larval development in Cnidaria: A connection to bilateria?   总被引:1,自引:0,他引:1  
Among the basal animal phyla, the Cnidaria display many characteristics similar to the Bilateria (the higher Metazoa). However, the relation of that outgroup phyla to the Bilateria is still equivocal. Additionally to morphological and genetic data, studies on cnidarian embryogenesis are essential to clarify the Cnidaria-Bilateria relationship. We analyzed cellular differentiation during planula larvae development of the jellyfish Podocoryne carnea. Within 24 to 30 h postfertilization, the diploblastic body structure and all cell types found in polyps have already differentiated in the larva. Whereas the differentiating smooth muscles, RFamide-positive nerve cells, or nematocytes (stinging cells) express no axial polarity, a newly discovered tyrosine-tubulin-positive nervous system develops gradually in repetitive patterns from anterior to posterior. These data demonstrate that part of the cnidarian nervous system develops from anterior to posterior in serially repeated patterns. This developmental mechanism seems to follow the bilaterian pattern and would have antedated the Cambrian explosion.  相似文献   

19.
McFarland MJ  Barker EL 《Life sciences》2005,77(14):1640-1650
The endocannabinoids are endogenous agonists of the cannabinoid receptors and some members of the transient receptor potential, vanilloid type (TRPV), family of cation channels. Endocannabinoids along with their target receptors comprise a signaling system that is not well characterized. There have been many advances in our collective understanding of endocannabinoid signaling in the last decade and experimental evidence is mounting that pharmacological augmentation of endocannabinoid tone might have a significant therapeutic benefit in several disease states. However, the mechanisms responsible for the biosynthesis, cellular uptake, and intracellular processing of endocannabinoids are not well understood and have been the source of much debate. Recent studies have revealed a role for detergent insoluble membrane domains called lipid rafts in various aspects of signaling associated with the endocannabinoid anandamide. Intact detergent insoluble membrane domains appear to play a role in an anandamide-induced signaling cascade that is independent of G protein-coupled cannabinoid receptors or TRPV channels. Furthermore, detergent insoluble membrane domain-related endocytosis and recycling to lipid rafts appear to regulate the organization and localization of anandamide metabolites. We will discuss the implications that these findings have on the way we view endocannabinoid signaling, trafficking, and processing.  相似文献   

20.
Herbivory is thought to be an inefficient diet, but it independently evolved from carnivorous ancestors in many metazoan groups, suggesting that plant‐eating is adaptive in some circumstances. In this study, we tested two hypotheses to explain the adaptive evolution of herbivory: (i) the Heterotroph Facilitation hypothesis (herbivory is adaptive because herbivores supplement their diets with heterotrophic microbes); and (ii) the Lipid Allocation hypothesis (herbivory is adaptive because algae, which have high lipid concentrations, are nutritionally similar to carnivory). We tested these hypotheses using enclosure cages placed in the Everglades and stocked with Sailfin Mollies (Poecilia latipinna), a native herbivore. Using shading and phosphorus addition (P), we manipulated the heterotrophic microbe and lipid composition of colonizing epiphyton and examined the effects of varying food quality on Sailfin Molly life history. Epiphyton grown in “shade only” conditions had a 55% increase in bacterial fatty acids and 34% lower ratios of saturated + monounsaturated to polyunsaturated fatty acids relative to the other treatments. Ratio of autotroph to heterotroph biovolume varied throughout the experiment, with a 697% increase at 3 weeks and 98% decrease at 6 weeks compared to the other treatments. Gut contents revealed that fish fed selectively on epiphyton to compensate for apparent deficiencies in the available food. Fish raised in “shade only” cages experienced the highest survival, which was best explained by autotrophic biovolume and algal‐ and bacterial‐derived fatty acids at 3 weeks (2–6× more likely than alternative models with ?AICc > 2.00), and by percentage of bacterial fatty acids in the diet at 6 weeks (3–8× more likely than alternative models with ?AICc > 2.00). There were no differences in fish growth among treatments. Autotrophic lipids play a role in early fish life history, but we did not find these to be the best predictors of life history later in the juvenile period. Instead, heterotrophic lipids facilitated the herbivorous diet and enhanced survival of juvenile fish in our experiment. Bacterial fatty acid content of the diet promoted herbivore survival, consistent with the Heterotroph Facilitation hypothesis. This is the first study to explicitly contrast Heterotrophic Facilitation and Lipid Allocation hypotheses for the adaptive evolution of herbivory in an aquatic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号