首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cilia, microtubule-based structures found on the surface of almost all vertebrate cells, play an array of diverse biological functions. Abnormal ciliary axonemal structure and function can result in a class of genetic disorders that are collectively termed ciliopathies. Model organisms,including Chlamydomonas reinhardtii and Caenorhabditis elegans have been widely used to study the complex genetic basis of ciliopathies.Here, we review the advantages of the zebrafish as a vertebrate model for human ciliopathies. We summarize the features of zebrafish cilia, and the major findings and contributions of the zebrafish model in recent studies of human ciliopathies. We also discuss the new genome editing approaches being efficiently used in zebrafish, and the exciting prospects of these approaches in modeling human ciliopathies.  相似文献   

2.
The zebrafish has proven to be an excellent model for analyzing issues of vertebrate development. In this review we ask whether the zebrafish is a viable model for analyzing the neurodevelopmental causes of autism. In developing an answer to this question three topics are considered. First, the general attributes of zebrafish as a model are discussed, including low cost maintenance, rapid life cycle and the multitude of techniques available. These techniques include large-scale genetic screens, targeted loss and gain of function methods, and embryological assays. Second, we consider the conservation of zebrafish and mammalian brain development, structure and function. Third, we discuss the impressive use of zebrafish as a model for human disease, and suggest several strategies by which zebrafish could be used to dissect the genetic basis for autism. We conclude that the zebrafish system could be used to make important contributions to understanding autistic disorders.  相似文献   

3.
4.
Zebrafish is a powerful model for the investigation of hematopoiesis.In order to isolate novel mutants with hematopoietic defects, large-scale mutagenesis screening of zebrafish was performed.By scoring specific hematopoietic markers,52 mutants were identified and then classified into four types based on specific phenotypic traits.Each mutant represented a putative mutation of a gene regulating the relevant aspect of hematopoiesis,including early macrophage development,early granulopoiesis,embryonic myelopoiesis,and definitive erythropoiesis/lymphopoiesis.Our method should be applicable for other types of genetic screening in zebrafish.In addition,further study of the mutants we identified may help to unveil the molecular basis of hematopoiesis.  相似文献   

5.
6.
Yue R  Li H  Liu H  Li Y  Wei B  Gao G  Jin Y  Liu T  Wei L  Du J  Pei G 《Developmental cell》2012,22(5):1092-1100
Hematopoietic development and vascular development are closely related physiological processes during vertebrate embryogenesis. Recently, endothelial-to-hematopoietic transition (EHT) was demonstrated to be critical for hematopoietic stem and progenitor cell induction, but its underlying regulatory mechanisms remain poorly understood. Here we show that thrombin receptor (F2r), a protease-activated G protein-coupled receptor required for vascular development, functions as a negative regulator during hematopoietic development. F2r is significantly upregulated during hematopoietic differentiation of mouse embryonic stem cells (mESCs) and zebrafish hematopoietic development. Pharmacological or genetic inhibition of F2r promotes hematopoietic differentiation, whereas F2r overexpression shows opposite effects. Further mechanistic studies reveal that F2r-RhoA/ROCK pathway inhibits EHT in vitro and negatively regulates zebrafish EHT and hematopoietic stem cell induction in vivo. Taken together, this study demonstrates a fundamental role of F2r-RhoA/ROCK pathway in vertebrate hematopoiesis and EHT, as well as an important molecular mechanism coordinating hematopoietic and vascular development.  相似文献   

7.
Zebrafish: a model system for the study of human disease   总被引:20,自引:0,他引:20  
The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. Large-scale genetic screens have identified hundreds of mutant phenotypes, many of which resemble human clinical disorders. The creation of critical genetic reagents, coupled with the rapid progress of the zebrafish genome initiative directed by the National Institutes of Health, are bringing this model system to its full potential for the study of vertebrate biology, physiology and human disease.  相似文献   

8.
9.
10.
Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.  相似文献   

11.
Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.  相似文献   

12.
In a genetic screen for mutations affecting organogenesis in the medaka, Oryzias latipes, we identified eight mutants with defects in embryonic hematopoiesis. These mutations were classified into seven complementation groups. In this paper, we characterize the five mutants that were confirmed in the next generation. The beni fuji mutant was defective in the generation of blood cells, exhibiting reduced blood cells at the initiation of circulation. Mutations in two genes, lady finger and ryogyoku, caused abnormal morphology of blood cells, i.e., deformation, along with a progressive decrease in the number of blood cells. The sekirei mutant exhibited photosensitivity with autofluorescent blood cells. Mutations in kyoho resulted in huge blood cells that were approximately three times longer than the wild-type blood cells. The spectrum of phenotypes identified in this study is similar to that of the zebrafish hematopoietic mutants except for the huge blood cells in kyoho. Our results demonstrate that medaka, as well as zebrafish, is a useful model to study hematopoiesis.  相似文献   

13.
Forward genetic screens in vertebrates are powerful tools to generate models relevant to human diseases, including neuropsychiatric disorders. Variability in phenotypic penetrance and expressivity is common in these disorders and behavioral mutant models, making their molecular-genetic mapping a formidable task. Using a 'phenotyping by segregation' strategy, we molecularly map the hypersensitive zebrafish houdini mutant despite its variable phenotypic penetrance, providing a generally applicable strategy to map zebrafish mutants with subtle phenotypes.  相似文献   

14.
Zebrafish genetics and vertebrate heart formation   总被引:3,自引:0,他引:3  
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.  相似文献   

15.
The study of blood has often defined paradigms that are relevant to the biology of other vertebrate organ systems. As examples, stem cell physiology and the structure of the membrane cytoskeleton were first described in hematopoietic cells. Much of the reason for these successes resides in the ease with which blood cells can be isolated and manipulated in vitro. The cell biology of hematopoiesis can also be illuminated by the study of human disease states such as anemia, immunodeficiency, and leukemia. The sequential development of the blood system in vertebrates is characterized by ventral mesoderm induction, hematopoietic stem cell specification, and subsequent cell lineage differentiation. Some of the key regulatory steps in this process have been uncovered by studies in mouse, chicken, and Xenopus. More recently, the genetics of the zebrafish (Danio rerio) have been employed to define novel points of regulation of the hematopoietic program. In this review, we describe the advantages of the zebrafish system for the study of blood cell development and the initial success of the system in this pursuit. The striking similarity of zebrafish mutant phenotypes and human diseases emphasizes the utility of this model system for elucidating pathophysiologic mechanisms. New screens for lineage-specific mutations are beginning, and the availability of transgenics promises a better understanding of lineage-specific gene expression. The infrastructure of the zebrafish system is growing with an NIH-directed genome initiative, providing a detailed map of the zebrafish genome and an increasing number of candidate genes for the mutations. The zebrafish is poised to contribute greatly to our understanding of normal and disease-related hematopoiesis.  相似文献   

16.
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.  相似文献   

17.
Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.  相似文献   

18.
In this paper, we report the results from allozyme and microsatellite markers in natural populations of the zebrafish, a species of great significance in biological studies. Four zebrafish wild samples from West Bengal, India, were analysed in a preliminary survey of levels and patterns of genetic variation. Results indicate high levels of genetic variability and weak genetic structure, although the latter is consistent with the geographical features of the area under study, sampling sites being located in the Ganges and Brahmaputra delta region, which is characterized by high waterways connectivity.  相似文献   

19.
Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans.  相似文献   

20.
Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号