首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

4.
5.
Misfolded proteins are at the core of many neurodegenerative diseases, nearly all of them associated with cognitive impairment. For example, Creutzfeldt-Jacob disease is associated with aggregation of prion protein,1,2 Lewy body dementia and Parkinson disease with α-synuclein3,4 and forms of frontotemporal dementia with tau, TDP43 and a host of other proteins.5,6 Alzheimer disease (AD), the most common cause of dementia,7 and its prodromal syndrome mild cognitive impairment (MCI)8 are an increasing public health problem and a diagnostic challenge to many clinicians. AD is characterized pathologically by the accumulation of amyloid β-protein (Aβ)9,10 as senile plaques and in the walls of blood vessels as amyloid angiopathy.11,12 Additionally, there are accumulations of tau-protein as neurofibrillary tangles and dystrophic neurites.11,12 Biological markers of AD and MCI can serve as in vivo diagnostic indicators of underlying pathology, particularly when clinical symptoms are mild1315 and are likely present years before the onset of clinical symptoms.1619 Research to discover and refine fluid and imaging biomarkers of protein aggregation has undergone a rapid evolution2022 and combined analysis of different modalities may further increase diagnostic sensitivity and specificity.2326 Multi-center trials are now investigating whether imaging and/or cerebrospinal fluid (CSF) biomarker candidates can be used as outcome measures for use in phase III clinical trials for AD.2729Key words: dementia, screening, biomarkers, amyloid, tau, Alzheimer disease, preclinical, presymptomaticCurrently, the diagnosis of AD is based on exclusion of other forms of impairment with definitive diagnosis requiring autopsy confirmation.30 Thus, there is a strong need to find easily measurable in vivo AD biomarkers that could facilitate early and accurate diagnosis31 as well as prognostic data to assist in monitoring therapeutic efficacy.32 Although biological markers such as MRI, PET scans and CSF increase the diagnostic likelihood that AD is present,9,1820,33,34 biomarkers are invasive, uncomfortable, expensive and may not be readily available to rural areas, underserved communities, underinsured individuals or developing countries, making them impractical for broad use. However, the lessons learned from biomarkers can be applied to increase the likelihood that clinicians will be able to detect disease at earlier stages in the form of dementia screening.Public health may be best defined as the organized efforts of society to improve health, often framed in terms of primary, secondary and tertiary prevention. Prevention encompasses an understanding of causation, alteration of natural history of disease and understanding of pathophysiological mechanisms.35 The clearest application of this from a public health perspective is in the setting of secondary prevention (i.e., screening)—early detection as a core element, coupled with treatments or preventative actions to reduce the burden of disease.35 In this instance we seek to identify individuals in whom a disease has already begun and who may be experiencing very mild clinical symptoms but have not yet sought out medical care. The objective of effective screening is to detect the disease earlier than it would have been detected with usual care. Recent healthcare reform (Accountable Care Act)36 proposes a Personalized Prevention Plan including screening for cognitive disorders, reimbursable through Medicare. Thus tying knowledge about dementia screening with underlying biology of protein misfolding associated with neurodegenerative disease can have enormous implications.A review of the natural history of dementia illustrates this point (Fig. 1). The timeline of disease from presumptive start to the patient demise is plotted. Stage I marks the biologic onset of disease; however this point often cannot be identified and may begin years to decades before any evidence is apparent (represented by dashed lines). As this stage is subclinical, it is difficult to study in humans but lends itself nicely to animal models. At some point in the progression of the biology, stage II begins heralding the first pathologic evidence of disease could be obtained—in the case of AD this could include CSF measurements of amyloid and tau22,26,27 or PET imaging with amyloid ligands.18,37 Subsequently, the first signs and symptoms of disease develop (stage III). Till this point, the disease process has been entirely presymptomatic. Beginning with the onset of symptoms, the patient may seek medical care (stage IV) and eventually be diagnosed (stage V). From stage III onwards, the patient enters the symptomatic phase of disease. From this point, the patient is typically treated with various pharmacologic and nonpharmacologic approaches towards some outcome. Another way to envision the disease spectrum is from the biological onset to the seeking of medical attention as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms.Open in a separate windowFigure 1Model of the natural history of AD. Timeline from presumptive start of AD through patient diagnosis is plotted. The initiation of biological changes (stage I) marks the onset of disease and begins years to decades before any evidence is apparent (represented by dashed lines). At some point the first pathologic evidence of disease (stage II) begins and in theory can be detected with biomarkers such as CSF measurements of amyloid and tau or PET imaging with amyloid ligands. Subsequently, the first signs and symptoms of disease develop (stage III) followed by the patient seeking medical attention (stage IV) and finally a diagnosis is established (stage V). This timeline can be clustered into a presymptomatic phase (stages I–III) and a symptomatic phase (stages III–V). An alternative way to envision the disease spectrum is from the biological onset to the seeking of medical attention (stages I–IV) as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms (stages IV and V). Stage III is the ideal time for dementia screening.What is the value of thinking about disease in this fashion? Such models allow researchers and clinicians to model the approach to finding and applying new diagnostics and offering new interventions. From stage I to stage III, the patient is the presymptomatic, preclinical phase of disease. The only means of detection would be with a biological marker that reflected protein misfolding or some proxy marker of these events. Although longitudinal evidence of cognitive change exist from 1–3 years before clinical diagnosis, raw scores on neuropsychological testing during this time remains in the normal range.38 After stage IV, the patient is in the symptomatic, clinical phase of disease. Testing here is centered on confirming the suspected diagnosis, correctly staging the disease and initiating the appropriate therapies. Basic scientific approaches focusing on the presymptomatic, preclinical phase and clinical care approaches focusing on the symptomatic, clinical phase are well established and will continue to benefit from additional research.However, if we focus only on these two phases, an opportunity will be missed to make a decidedly important impact in the patient''s well-being. From stage III to stage IV, the patient enters symptomatic, preclinical phase of disease; symptomatic because the patient or family is beginning to detect some aspect of change, but preclinical because these signs and symptoms have not yet been brought to medical attention. In the case of AD (and the other forms of dementia) this period may go for an extended length of time as patients, families and clinicians dismiss early cognitive symptoms as part of the normal aging process. Thus, the rationale for screening is that if we can identify disease earlier in its natural history than would ordinarily occur, intervention measures (those currently available and those that are being developed) would be more effective. Dementia screening therefore would be best suited to detect cognitive impairment at the beginning of disease signs (stage III), particularly if these screening measures reflect what is known about the symptomatic, clinical phase of disease and correlate with the pathologic changes occurring in the brain during the pre-symptomatic, preclinical phase of disease.In a recent paper, we evaluated the relationship between several dementia screening tests and biomarkers of AD.40 We tested whether a reliable and validated informant-based dementia screening test (the AD8)41,42 correlates with changes in AD biomarkers and, if positive, screening with the AD8 clinically supports an AD clinical phenotype, superior to a commonly used performance-based screening tests including the Mini Mental State Exam (MMSE)43 and the Short Blessed Test (SBT).44 A total of 257 participants were evaluated, administered a comprehensive clinical and cognitive evaluation with the Clinical Dementia Rating scale (CDR)45 used as the gold standard. Participants consented to and completed a variety of biomarker studies including MRI, amyloid imaging using the Pittsburgh Compound B (PiB)37,46 and CSF studies of Aβ42, tau and phosphorylated tau at Serine 181 (p-tau181).23,24 The sample had a mean age of 75.4 ± 7.3 years with 15.1 ± 3.2 years of education. The sample was 88.7% Caucasian and 45.5% male with a mean MMSE score of 27.2 ± 3.6. The formal diagnoses of the sample was 156 CDR 0 cognitively normal, 23 CDR 0.5 MCI, 53 CDR 0.5 very mild AD and 25 CDR 1 mild AD. Participants with positive AD8 scores (graded as a score of 2 or greater) exhibited the typical AD fluid biomarker phenotype characterized by significantly lower mean levels of CSF Aβ42, greater CSF tau, p-tau181 and the tau(s)/Aβ42 ratios.26,27 They also exhibited smaller temporal lobe volumes and increased mean cortical binding potential (MCBP) for PiB imaging similar to studies of individuals with AD.18,19 These findings support that informant-based assessments may be superior to performance-based screening measures such as the MMSE or SBT in corresponding to underlying AD pathology, particularly at the earliest stages of decline. The use of a brief test such as the AD8 may improve strategies for detecting dementia in community settings where biomarkers may not be readily available and also may enrich clinical trial recruitment by increasing the likelihood that participants have underlying biomarker abnormalities.40To gain a better understanding of changes in biomarkers in the symptomatic, preclinical phase, a post hoc evaluation of the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard assessment was completed. Some of these nondemented individuals have abnormal AD biomarkers, but in the absence of performing lumbar punctures or PET scans, is it possible to detect evidence of change? AD8 scores for 132 individuals were less than 2; thus their screening test suggests no impairment (mean AD8 score = 0.30 ± 0.46). However 25 of these individuals had AD8 scores (≥2) suggesting impairment (mean AD8 score = 2.4 ± 0.91). Applying the model described in Figure 1, some of these individuals are hypothesized to be in the symptomatic, preclinical phase of disease. No difference in age, education, gender or brief performance tests (MMSE or SBT) were detected between groups (45 is increased in the individuals with higher AD8 scores supporting that informants were noticing and reporting changes in the participants cognitive function. A review of the individual AD8 questions that were first reported to change suggest that informants endorsement of subtle changes in memory (repeats questions, forgets appointments) and executive ability (trouble with judgment, appliances, finances) are valuable early signs. This is consistent with previous reports that changes in memory and judgment/problem solving CDR boxscores in nondemented individuals correlate with findings of AD pathology at autopsy.17 Although biomarkers do not reach significance in this small sample, the direction of change in favor of “Alzheimerization” of this group suggests that some of these individuals may be in the symptomatic, preclinical phase of disease. More research with larger sample sizes and longitudinal follow-up is needed to confirm this hypothesis. It should be also noted that not all individuals with an AD8 score of 2 or greater have AD. The AD8 was designed to detect cognitive impairment from all causes, and as such, these mildly affected individuals may have other causes for their cognitive change such as depression, Lewy body dementia or vascular cognitive impairment.41,42

Table 1

Characteristics of nondemented CDR 0 individuals stratified by AD8 scores
VariableAD8 <2AD8 ≥2p value
Clinical Characteristics
Age, y75.2 (7.1)76.5 (8.4)0.41
Education, y15.4 (3.2)15.9 (2.7)0.47
Gender, % Men42.136.40.45
ApoE status, % at least 1 e4 allele25.834.40.08
Dementia Ratings
CDR sum boxes0.04 (0.13)0.12 (0.22)0.01
MMSE28.6 (1.5)29.2 (1.1)0.07
SBT2.4 (3.1)2.3 (2.9)0.82
AD8 Questions Endorsed “Yes,” %
Problems with judgment12.972.0<0.001
Reduced interest04.00.02
Repeats8.340.0<0.001
Trouble with appliances1.540.0<0.001
Forgets month/year0.800.66
Trouble with finances0.816.00.002
Forgets appointments2.328.0<0.001
Daily problems with memory20.066.70.008
Biomarkers
MCBP, units0.12 (0.23)0.26 (0.39)0.06
CSF Aβ42, pg/ml596.7 (267.9)591.9 (249.9)0.95
CSF tau, pg/ml300.3 (171.5)316.7 (155.0)0.76
CSF p-tau181, pg/ml51.9 (24.0)56.9 (22.6)0.49
Open in a separate windowApoE, apolipoprotein E; CDR, Clinical Dementia Rating; MMSE, Mini Mental State Exam; SBT, Short Blessed Test; MCBp, mean cortical binding potential; CSF, cerebrospinal fluidTo explore this further, changes in AD biomarkers (CSF Aβ42, Tau and PiB-PET) were plotted against the age of the participant (Fig. 2). Previous research suggest that biomarker changes are more commonly seen in older populations47 and increasing age is the greatest risk factor for developing AD.7 AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 Impairment). The top row (Parts A–C) represents biomarker profiles for the entire sample of 257 individuals divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 No Impairment group (black line) while changes in PiB binding is seen only in the AD8 Impaired group (gray line). The second row in Figure 2 (Parts D–F) represents biomarker profiles for the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard, 25 of whom had AD8 scores in the impaired range. Some of these individuals are hypothesized to be in the symptomatic, preclinical phase of AD. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.Open in a separate windowFigure 2Changes in AD biomarkers by age and AD8 scores. AD biomarkers are plots as a function of age (x-axis) and AD8 scores. AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 impairment). The top row (A–C) represents biomarker profiles for the entire cohort (n = 257) divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 no impairment group (black line) while changes in PiB binding is seen only in the AD8 impaired group (gray line). The bottom row (D–F) represents biomarker profiles for the individuals rated CDR 0 no dementia (n = 156), 25 of whom had AD8 scores in the impaired range. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.While a number of interpretations are possible from this type of data, if one considers the model of disease in Figure 1 it appears that CSF changes in Aβ42 and Tau precede PiB binding changes in the presymptomatic, preclinical phase of disease consistent with previous attempts at modeling AD.25 Even with sensitive measurements, this phase is unlikely to be detected without some biological evaluation. At the start of the symptomatic, preclinical phase of AD, PiB binding increases and this may be detected by careful evaluation of the patient and a knowledgeable informant with a validated dementia screening instrument such as the AD8. As patients move into the symptomatic, clinical phase of disease, biomarkers are markedly abnormal as is most cognitive testing permitting careful staging and prognostication.AD and related disorders will become a public health crisis and a severe burden on Medicare in the next two decades unless actions are taken to (1) develop disease modifying medications,48 (2) provide clinicians with valid and reliable measures to detect disease at the earliest possible stage and (3) reimburse clinicians for their time to do so. While this perspective does not address development of new therapeutics, it should be clear that regardless of what healthcare reform in the US eventually looks like,1 dementia screening is a viable means to detect early disease as it enters its symptomatic phase. Dementia screening with the AD8 offers the additional benefit of corresponding highly with underlying disease biology of AD that includes alteration of protein conformation, protein misfolding and eventual aggregation of these misfolded proteins as plaques and tangles.  相似文献   

6.
Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. Although many of the details underlying the mechanisms by which MSC modulate the immune system have been defined for human and rodent (mouse and rat) MSC, much less is known about MSC from other veterinary species. This knowledge gap is particularly important because the clinical use of MSC in veterinary medicine is increasing and far exceeds the use of MSC in human medicine. It is crucial to determine how MSC modulate the immune system for each animal species as well as for MSC derived from any given tissue source. A comparative approach provides a unique translational opportunity to bring novel cell-based therapies to the veterinary market as well as enhance the utility of animal models for human disorders. The current review covers what is currently known about MSC and their immunomodulatory functions in veterinary species, excluding laboratory rodents.Abbreviations: AT, adipose tissue; BM, Bone marrow; CB, umbilical cord blood; CT, umbilical cord tissue; DC, dendritic cell; IDO, indoleamine 2;3-dioxygenase; MSC, mesenchymal stem cells; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factorMesenchymal stem cells (MSC, alternatively known as mesenchymal stromal cells) were first reported in the literature in 1968.39 MSC are thought to be of pericyte origin (cells that line the vasculature)21,22 and typically are isolated from highly vascular tissues. In humans and mice, MSC have been isolated from fat, placental tissues (placenta, Wharton jelly, umbilical cord, umbilical cord blood), hair follicles, tendon, synovial membrane, periodontal ligament, and every major organ (brain, spleen, liver, kidney, lung, bone marrow, muscle, thymus, pancreas, skin).23,121 For most current clinical applications, MSC are isolated from adipose tissue (AT), bone marrow (BM), umbilical cord blood (CB), and umbilical cord tissue (CT; 11,87,99 Clinical trials in human medicine focus on the use of MSC both for their antiinflammatory properties (graft-versus-host disease, irritable bowel syndrome) and their ability to aid in tissue and bone regeneration in combination with growth factors and bone scaffolds (clinicaltrials.gov).131 For tissue regeneration, the abilities of MSC to differentiate and to secrete mediators and interact with cells of the immune system likely contribute to tissue healing (Figure 1). The current review will not address the specific use of MSC for orthopedic applications and tissue regeneration, although the topic is covered widely in current literature for both human and veterinary medicine.57,62,90

Table 1.

Tissues from which MSC have been isolated
Tissue source (reference no.)
SpeciesFatBone marrowCord bloodCord tissueOther
Cat1348356
Chicken63
Cow13812108
Dog973, 5978, 119139Periodontal ligament65
Goat66964
Horse26, 13037, 40, 12367130Periodontal ligament and gingiva88
Nonhuman primate28, 545
Pig1351147014, 20, 91
Rabbit1288032Fetal liver93
Sheep849542, 55
Open in a separate windowOpen in a separate windowFigure 1.The dual roles of MSC: differentiation and modulation of inflammation.Long-term studies in veterinary species have shown no adverse effects with the administration of MSC in a large number of animals.9,10,53 Smaller, controlled studies on veterinary species have shown few adverse effects, such as minor localized inflammation after MSC administration in vivo.7,15,17,45,86,92,98 Private companies, educational institutions, and private veterinary clinics (including Tufts University, Cummins School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, VetStem, Celavet, Alamo Pintado Equine Medical Center, and Rood and Riddle Equine Hospital) offer MSC as a clinical treatment for veterinary species. Clinical uses include tendon and cartilage injuries, tendonitis, and osteoarthritis and, to a lesser extent, bone regeneration, spinal cord injuries, and liver disease in both large and small animals.38,41,113 Even with this broad clinical use, there have been no reports of severe adverse effects secondary to MSC administration in veterinary patients.  相似文献   

7.
8.
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC.Key words: prion protein (PrP), prions, amyloid, recombinant prion protein, transgenic mouse, protein misfolding cyclic amplification (PMCA), synthethic prionPrions are responsible for a heterogeneous group of fatal neurodegenerative diseases (1 They can be sporadic, genetic or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC).2 Prions are characterized by their infectious properties and by their intrinsic ability to encipher distinct biochemical properties through their secondary, tertiary and quaternary protein structures. In particular, the transmission of the disease is due to the ability of a prion to convert the physiological PrPC into the pathological form (PrPSc), acting as a template.3 The two isoforms of PrP appear to be different in terms of protein structures, as revealed by optical spectroscopy experiments such as Fourier-transform infrared and circular dichroism.4 PrPC contains 40% α-helix and 3% β-sheet, while the pathological isoform, PrPSc, presents approximately 30% α-helix and 45% β-sheet.4,5 PrPSc differs from PrPC because of its altered physical-chemical properties such as insolubility in non-denaturing detergents and proteinases resistance.2,6,7

Table 1

The prion diseases
Prion diseaseHostMechanism
iCJDhumansinfection
vCJDhumansinfection
fCJDhumansgenetic: octarepeat insertion, D178N-129V, V180I, T183A, T188K, T188R-129V, E196K, E200K, V203I, R208H, V210I, E211Q, M232R
sCJDhumans?
GSShumansgenetic: octarepeat insertion, P102L-129M, P105-129M, A117V-129V, G131V-129M, Y145*-129M, H197R-129V, F198S-129V, D202N-129V, Q212P, Q217R-129M, M232T
FFIhumansgenetic: D178-129M
Kurufore peopleinfection
sFIhumans?
Scrapiesheepinfection
BSEcattleinfection
TMEminkinfection
CWDmule deer, elkcontaminated soils?
FSEcatsinfection
Exotic ungulate encephalopathygreater kudu, nyala, oryxinfection
Open in a separate windowi, infective form; v, variant; f, familial; s, sporadic; CJD, Creutzfeldt-Jakob disease; GSS, Gerstmann-Straüssler-Sheinker disease; FFI, fatal familial insomnia; sFI, sporadic fatal insomnia; BSE, bovine spongiform encephalopathy; TME, transmissible mink encephalopathy; CWD, chronic wasting disease; FSE, feline spongiform encephalopathy.73,78The prion conversion occurring in prion diseases seems to involve only conformational changes instead of covalent modifications. However, Mehlhorn et al. demonstrated the importance of a disulfide bond between the two cysteine residues at position 179 and 214 (human (Hu) PrP numbering) to preserve PrP into its physiological form. In the presence of reducing conditions and pH higher than 7, recombinant (rec) PrP tends to assume high β-sheet content and relatively low solubility like PrPSc.8  相似文献   

9.
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.Viruses from the Paramyxoviridae family have caused disease in humans and animals for centuries. Over the last 40 years, many paramyxoviruses isolated from animals and people have been newly described (16, 17, 22, 29, 31, 32, 36, 42, 44, 46, 49, 58, 59, 62-64). Viruses from this family are pleomorphic, enveloped, single-stranded, nonsegmented, negative-sense RNA viruses that demonstrate serological cross-reactivity with other paramyxoviruses related to them (30, 46). The subfamily Paramyxovirinae is divided into five genera: Respirovirus, Morbillivirus, Rubulavirus, Henipavirus, and Avulavirus (30). The Avulavirus genus contains nine distinct avian paramyxovirus (APMV) serotypes (Table (Table1),1), and information on the discovery of each has been reported elsewhere (4, 6, 7, 9, 12, 34, 41, 50, 51, 60, 68).

TABLE 1.

Characteristics of prototype viruses APMV1 to APMV9 and the penguin virus
StrainHostDiseaseDistributionFusion cleavagecGI accession no.
APMV1/Newcastle disease virus>250 speciesHigh mortalityWorldwideGRRQKRF45511218
InapparentWorldwideGGRQGRLa11545722
APMV2/Chicken/CA/Yucaipa/1956Turkey, chickens, psittacines, rails, passerinesDecrease in egg production and respiratory diseaseWorldwideDKPASRF169144527
APMV3/Turkey/WI/1968TurkeyMild respiratory disease and moderate egg decreaseWorldwidePRPSGRLa209484147
APMV3/Parakeet/Netherlands/449/1975Psittacines, passerines, flamingosNeurological, enteric, and respiratory diseaseWorldwideARPRGRLa171472314
APMV4/Duck/Hong Kong/D3/1975Duck, geese, chickensNone knownWorldwideVDIQPRF210076708
APMV5/Budgerigar/Japan/Kunitachi/1974Budgerigars, lorikeetsHigh mortality, enteric diseaseJapan, United Kingdom, AustraliaGKRKKRFa290563909
APMV6/Duck/Hong Kong/199/1977Ducks, geese, turkeysMild respiratory disease and increased mortality in turkeysWorldwidePAPEPRLb15081567
APMV7/Dove/TN/4/1975Pigeons, doves, turkeysMild respiratory disease in turkeysUnited States, England, JapanTLPSSRF224979458
APMV8/Goose/DE/1053/1976Ducks, geeseNone knownUnited States, JapanTYPQTRLa226343050
APMV9/Duck/NY/22/1978DucksNone knownWorldwideRIREGRIa217068693
APMV10/Penguin/Falkland Islands/324/2007Rockhopper penguinsNone KnownFalkland IslandsDKPSQRIa300432141
Open in a separate windowaRequires the addition of an exogenous protease.bProtease requirement depends on the isolate examined.cPutative.Six of these serotypes were classified in the latter half of the 1970s, when the most reliable assay available to classify paramyxoviruses was the hemagglutination inhibition (HI) assay (61). However, there are multiple problems associated with the use of serology, including the inability to classify some APMVs by comparing them to the sera of the nine defined APMVs alone (2, 8). In addition, one-way antigenicity and cross-reactivity between different serotypes have been documented for many years (4, 5, 14, 25, 29, 33, 34, 41, 51, 52, 60). The ability of APMVs, like other viruses, to show antigenic drift as it evolves over time (37, 43, 54) and the wide use and availability of precise molecular methods, such as PCR and genome sequencing, demonstrate the need for a more practical classification system.The genetic diversity of APMVs is still largely unexplored, as hundreds of avian species have never been surveyed for the presence of viruses that do not cause significant signs of disease or are not economically important. The emergence of H5N1 highly pathogenic avian influenza (HPAI) virus as the cause of the largest outbreak of a virulent virus in poultry in the past 100 years has spurred the development of surveillance programs to better understand the ecology of avian influenza (AI) viruses in aquatic birds around the globe, and in some instances it has provided opportunities for observing other viruses in wild bird populations (15, 53). In 2007, as part of a seabird health surveillance program in the Falkland Islands (Islas Malvinas), oral and cloacal swabs and serum were collected from rockhopper penguins (Eudyptes chrysocome) and environmental/fecal swab pools were collected from other seabirds.While AI virus has not yet been isolated from penguins in the sub-Antarctic and Antarctic areas, there have been two reports of serum antibodies positive to H7 and H10 from the Adélie species (11, 40). Rare isolations of APMV1, both virulent (45) and of low virulence (8), have been reported from Antarctic penguins. Sera positive for APMV1 and AMPV2 have also been reported (21, 24, 38, 40, 53). Since 1981, paramyxoviruses have been isolated from king penguins (Aptenodytes patagonicus), royal penguins (Eudyptes schlegeli), and Adélie penguins (Pygoscelis adeliae) from Antarctica and little blue penguins (Eudyptula minor) from Australia that cannot be identified as belonging to APMV1 to -9 and have not yet been classified (8, 11, 38-40). The morphology, biological and genomic characteristics, and antigenic relatedness of an APMV recently isolated from multiple penguin colonies on the Falkland Islands are reported here. Evidence that the virus belongs to a new serotype (APMV10) and a demonstration of the advantages of a whole genome system of analysis based on random sequencing followed by comparison of genetic distances are presented. Only after all APMVs are reported and classified will epidemiological information be known as to how the viruses are moving and spreading as the birds travel and interact with other avian species.  相似文献   

10.
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.Key words: decorin, angiogenesis, motility, α2β1 integrin, insulin-like growth factor I receptor, Rac GTPaseLed by appropriate cues, the vascular system undergoes postnatal remodelling (angiogenesis), to maintain tissue homeostasis. Thus while much of the mature endothelium is quiescent, locally activated endothelial cells re-enter the cell cycle, and assume a motile phenotype essential for sprouting and neo-vessel formation. Concomitantly, the surrounding extracellular matrix (ECM) is significantly altered through de novo protein expression, deposition of plasma components and protease-mediated degradation. The latter liberates cryptic binding sites and sequestered growth factors in addition to intact and degraded ECM components, which themselves possess pro- and anti-angiogenic signalling properties. For supported blood flow, endothelium quiescence and integrity is re-established, and the ECM is organized into mature, cross-linked networks. In short, endothelial cells regulate ECM synthesis, assembly and turnover while the structure and composition of ECM in turn influences cellular phenotype. The ECM therefore, plays a critical role in control of endothelial cell behaviour during angiogenesis.Decorin is a member of the small leucine-rich repeat proteoglycan (SLRP) family, which was first discovered ‘decorating’ collagen I fibrils and was subsequently shown to regulate fibrillogenesis.1,2 Both the protein core and the single, covalently attached glycosaminoglycan (GAG) moieties of decorin are involved in this function, the relevance of which is demonstrated by the phenotype of the decorin null mouse, which exhibits loose, fragile skin due to dysregulated fibrillogenesis.2 Interestingly, a role for decorin in postnatal angiogenesis was also revealed by studies in the decorin null background. Corneal neoangiogenesis was reduced.3 Conversely, neo-angiogenesis was enhanced during dermal wound healing, although surprisingly this led to delayed wound closure.4 In this case, skin fragility due to the absence of decorin may have hindered wound closure, despite an increased blood supply. It is apparent however, that decorin plays a role in inflammation-associated angiogenesis. Indeed, endothelial cells undergoing angiogenic morphogenesis in this environment express decorin, while quiescent endothelial cells do not,36 indicating that decorin modulates endothelial cell behaviour specifically during inflammatory-associated remodelling of the vascular system.To understand decorin effects on angiogenic morphogenesis within a minimalist environment, various in vitro models of angiogenesis have been employed (6 Similarly, decorin expression enhanced tube formation on matrigel,8 but in other studies utilising this substrate was found to either have no influence9 or to inhibit tubulogenesis induced by growth factors.10 In yet another study, decorin inhibited tube formation when presented as a substrate prior to addition of collagen I.7 These contrasting observations may reflect the importance of the micro-environment within which decorin is presented. Alternatively, controversial results could result from different sources of decorin since cell types differ in their post-translational modifications of the GAG moiety. Hence, varying length or sulfation patterns of GAG chains may account for different biological activities of decorin. Discrepancies can also be explained as artefacts due to different purification protocols, such as when denaturing conditions are used to extract decorin from tissue. Taken together however, these observations suggest that decorin is neither a pro- nor an anti-angiogenic factor per se, but rather a regulator of angiogenesis, dependent on local cues for different activities. Further, that decorin is capable of both enhancing and inhibiting tubulogenesis may suggest a role in balancing vessel regression versus persistence. Immature vessels have a period of plasticity prior to maturation, during which they can be remodelled, and either regress, or given the appropriate signals, proceed to maturity.11 As a modulator of tube formation, it is tempting to speculate that decorin could influence the switch from immature to mature vessels, favouring one or the other in conjunction with signals from the local environment.

Table 1

Summary of the key functions of decorin in controlling cell behaviour
Cell typeFunctionDecorin additionEnvironment/MechanismReferences
Endothelial (HUVEC derived)Enhanced tubulogenesisOverexpressionCollagen I lattices, enhanced survival potentially IGF-IR mediated6, 18
Mouse cerebral endothelial cellsEnhanced tubulogenesisOverexpressionMatrigel substrate, EGFR activation leads to VEGF upregulation8
HUVECNo effect on tubulogenesisExogenousMatrigel substrate9
HUVECInhibited tubulogenesisExogenousMatrigel substrate, growth factor induced10
HUVEC, HDMECInhibited tubulogenesisSubstrateCollagen I lattice overlay7
HUVECMinimal adhesionSubstrateDecorin substrate7
HUVECInhibited adhesionExogenousCollagen I and fibronectin10
HUVECInhibited migrationExogenousVEGF-mediated chemotaxis through gelatin10
Endothelial (HUVEC derived)Enhanced adhesionExogenousCollagen I, fibronectin17
BAEInhibited migrationOverexpressionCollagen I, enhanced fibronectin fibrilllogenesis by decorin12
Endothelial (HUVEC derived)Enhanced motilityExogenousCollagen I, Decorin activates IGF-IR/Rac-1 and α2β1 integrin activity17
Human lung fibroblastEnhanced motilityExogenousDecorin activates Rho GTPases, mediators of motility20
Human foreskin fibroblastInhibited adhesionExogenousDecorin GAG moiety competes with CD44 for binding to collagen XIV14
Mouse Fibroblast (3T3)Inhibited adhesionExogenousDecorin competes with cells for interaction with thrombospondin at the cell-binding domain15
Human fibroblastInhibits adhesionExogenousDecorin GAG competes with cell-surface heparin-sulphate for interaction with fibronectin16
PlateletsSupported adhesionSubstrateDecorin interacts with, and signals through α2β1 integrin on platelets19
Open in a separate windowDecorin has been demonstrated to influence cell adhesion and motility, in particular, its influence on endothelial cell adhesion, migration and tube formation is controversial, and is the main focus of this table. Some additional key effects of decorin on fibroblast and platelet adhesion and motility are also summarised. In each case, the extracellular matrix environment in which the assay was conducted is shown, and where known, the proposed mechanism is stated.What are the molecular mechanisms by which decorin influences tubulogenesis? Since endothelial cell-matrix interactions control all aspects of angiogenesis, from motility, sprouting and lumen formation, to survival and proliferation, the role of decorin should be considered in this regard. Indirectly, decorin could quite feasibly modulate cell-matrix interactions through regulation of matrix structure and organisation2,12 and growth factor activity.13 However in vitro studies have begun to unravel rather more direct mechanisms. Studies on fibroblasts indicate that decorin can inhibit cell-matrix interactions by binding to and masking integrin attachment sites in matrix substrates. For instance, decorin inhibits fibroblast adhesion by competing with cell-surface GAG-containing CD44 for GAG binding sites on collagen XIV;14 similarly, decorin inhibits fibroblast adhesion to thrombospondin by interacting with the cell-binding domain of this substrate15 and may compete with fibroblast cell-surface heparin sulphate proteoglycans for binding to fibronectin.16 While such studies are rather lacking in endothelial cell systems, any one of these interactions could be relevant to endothelial cells. However, that decorin slightly enhanced endothelial cell attachment to fibronectin and collagen I in our system points to the existence of alternative mechanisms.17Indeed, a recent study demonstrated that decorin is an important signalling molecule in endothelial cells, where it both signals through the insulin-like growth factor I receptor (IGF-IR) and competes with the natural ligand for interaction.18 Further, decorin appears to be biologically available and relevant for interaction with this receptor in vivo. Increased receptor expression was observed in both native and neo-vessels in decorin knockout mouse cornea in conjunction with reduced neoangiogenesis. In accordance with this, decorin downregulates the IGF-IR in vitro,18 indicating that signalling through, and control of IGF-IR levels by decorin could be an important factor in regulating angiogenesis. Additionally, immobilised decorin supports platelet adhesion through interactions with the collagen I-binding integrin, α2β1.19 We have shown that decorin—α2β1 integrin interaction may play a part in modulating endothelial cell—collagen I interactions, and further, have demonstrated that decorin promotes motility in this context through activation of IGF-IR and the small Rho GTPase, Rac.17 Similarly, decorin stimulates fibroblast motility through activation of small Rho GTPases,20 supporting a direct mechanism by which decorin influences cell-matrix interactions and motility, via activation of key regulators of cytoskeleton and focal adhesion dynamics. It should also be noted that signalling by decorin directly through ErbB receptors has also been extensively demonstrated in cancer cell systems where these receptors are frequently overexpressed.21 This interaction was not relevant to human umbilical vein endothelial cells18 although a recent study found that decorin activated the epidermal growth factor receptor in mouse cerebral endothelial cells.8 These differences presumably depend on cell-specific factors such as receptor availability as well as relative receptor affinities. In a complex system such as angiogenesis, multiple mechanisms doubtlessly are involved. However, it is clear that modulation of cell-matrix interactions by decorin could certainly be expected to play a key role in contributing to regulation of postnatal angiogenesis.Signals from the extracellular matrix via integrins and from growth factors to their receptors are co-ordinately integrated into the complex angiogenic cascade. Evidence exists to suggest that decorin could regulate cell-matrix interactions during early tube formation, i.e., endothelial cell sprouting and cell alignment, through both influencing integrin activity and signalling through IGF-IR.17 Later stages of angiogenesis, such as lumen formation and maturation are also potentially regulated by decorin through activation of Rac and α2β1 integrin,17 since activity of both these molecules is integral to this phase of angiogenesis.22 Additionally, Rac activity is implicated in regulating endothelium permeability and integrity,23 providing further possibilities in control of endothelium function by decorin. Further investigations would be required however, to establish whether decorin exerts its effects on tubulogenesis through these molecular mechanisms.Of relevance to α2β1 integrin-dependent endothelial cell interaction with collagen I, sprouting endothelial cells would encounter interstitial ECM, of which collagen I is a major component. Further, a ‘provisional’ matrix containing collagen I is secreted by sprouting endothelial cells and may be required for motility,24 and tube formation.25 Theoretically, various interactions could exist between decorin, collagen type I and α2β1 integrin in this context, which may be differentially supported through various stages of angiogenesis. Up to eleven interaction sites of α2β1 integrin have been postulated to exist within collagen I, albeit with different affinities towards this receptor. Some of these binding sites may only be recognized by the integrin in its highly active conformation.26 By influencing the collagen I binding activity of α2β117 decorin could thus alter the number of endothelial cell—collagen I contacts, thereby modulating adhesion and motility. Additionally, some decorin and α2β1 integrin binding sites may overlap, or are in close proximity.27 By virtue of this location, decorin would be ideally placed to locally modulate collagen I—binding activity of the integrin. Interestingly, modulation of activity of both α2β1 integrin and the small Rho GTPase Rac by decorin also could have implications for collagen I fibrillogenesis, which in turn, would indirectly influence cell-matrix interactions. Both the related Rho GTPase RhoA, and α2β1 integrin are involved in cellular control of pericellular collagen I fibrillogenesis.28 Thus in addition to regulating cell independent fibrillogenesis1 decorin could potentially influence cell-mediated aspects of this process. Pertinent questions remain therefore, as to under which biological situations is the interaction between α2β1 integrin and decorin relevant, and does decorin influence α2β1 integrin activity on the cell-surface through direct interactions, and/or by inside-out signalling through the IGF-I receptor (or alternative receptors)? Further, how do differential decorin/α2β1 integrin/collagen I interactions mediate fibrillogenesis and cell-matrix interactions?Interaction of decorin with multiple binding partners makes it challenging to fully understand the role of decorin in angiogenesis (Fig. 1). A consideration of the relative accessibility and affinity of binding sites on both decorin and its'' binding partners would facilitate further understanding. It is still an open question whether collagen I—bound decorin can simultaneously interact with other ligands. In the case of the IGF-IR, the binding site on the concave surface of decorin overlaps with that of collagen I, thus mutually exclusive interactions seem more likely. That decorin clearly influences both collagen I matrix integrity and IGF-IR activity in vivo, would suggest that decorin is not exclusively associated with collagen I. Perhaps decorin occurs in a more ‘soluble’ form when locally secreted by endothelial cells undergoing angiogenic morphogenesis. Does collagen-bound decorin interact simultaneously with α2β1 integrin? This could be a possibility, since decorin core protein interacts with collagen I, allowing the possibility of GAG—integrin interaction. In this scenario however, interaction of α2β1 integrin with the GAG moiety of decorin in preference to collagen I might sound improbable. Nevertheless, during remodelling, interactions such as these could occur in a transient manner, and be crucial in controlling cell-matrix interactions in a rapidly changing environment. Interestingly, decorin interacts with IGF-IR via the core protein,18 and with α2β1 integrin via the GAG moiety17 raising yet another possibility of simultaneous decorin interaction with multiple binding partners. Additionally, while it is a matter of some debate whether decorin exists predominantly as a monomer or as a dimer in a physiologically relevant environment, it has been proposed that collagen-bound decorin could support simultaneous interactions of decorin with additional binding partners, and that dimer-monomer transitions also could facilitate differential interactions.29 Perhaps supporting multiple simultaneous interactions of decorin, the phenotype of patients with a progeroid variant of Ehlers-Danlos Syndrome indicates an essential role for properly glycosylated decorin (and the related SLRP biglycan). These patients exhibit skeletal and craniofacial abnormalities, loose skin and deficiencies in wound healing as a direct result of abnormal decorin and biglycan glycosylation, such that approximately half the population of decorin is secreted as the core protein only.30 Notably, the defect in loose skin and in wound healing is similar to the phenotype of the decorin knockout mouse.2,4 Evidently, the core protein alone cannot maintain normal function in vivo, despite being responsible for several important interactions of decorin, in particular, binding to collagen I and the IGF-IR. These studies may therefore support a requirement for simultaneous interactions of the core protein and GAG moieties for proper function of decorin.Open in a separate windowFigure 1Decorin influences cell-matrix interactions through multiple mechanisms. Decorin signals through the IGF-IR via the core protein moiety (grey diamond), and may simultaneously interact with the α2 subunit (cross-hatched subunit) of α2β1 integrin via the GAG moiety (wavy black line) (A). Activation of Rac through IGF-IR enhances motility by modulating cytoskeleton dynamics and may influence α2β1 integrin activity for collagen I through inside-out signalling (B). Decorin induces large, peripheral vinculin (grey oval)-positive focal adhesions by signalling through IGF-IR and/or α2β1 integrin (C and D). Decorin could also directly influence α2β1 integrin activity through binding to the α2 subunit and/or simultaneous interactions with collagen I (thick wavy black line) through the core protein. Collagen I interacts with the A-domain (white circle) of the α2 subunit at a site distinct to that of decorin (D). In summary, activation of IGF-IR, Rac and modulation of α2β1 integrin affinity for collagen I by decorin modulates cell-matrix interactions and contributes to enhanced motility and tubulogenesis in a collagen I environment.Modulation of cell-matrix interactions by decorin plays a key role in modulating endothelial cell motility and angiogenesis in vivo, and some of the mechanisms responsible have been elucidated in conjunction with in vitro studies. The large number of potential interactions of decorin with multiple matrix components and cell-surface receptors makes a clear understanding difficult. However, direct activation of signalling pathways by decorin has been highlighted recently as likely to play an important role. In conclusion, a better understanding of the mechanisms by which decorin regulates vessel formation and persistence would contribute to understanding how angiogenesis is dysregulated in a clinical setting, and how rational therapeutic strategies can be developed to restore tissue function and homeostasis.  相似文献   

11.
12.
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

13.
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (
35S:TomatoBRI1 complemented lineWt*cu3*
6-deoxocathasterone566964676
6-deoxoteasteronend4748
3-dehydro-6-deoxoteasterone876269
6-deoxotyphasterolnd588422
6-deoxocastasterone1,7556,24726,210
castasterone25563717,428
brassinolidendndnd
Open in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

14.
Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function     
Shaojun Dai  Sixue Chen 《Molecular & cellular proteomics : MCP》2012,11(12):1622-1630
  相似文献   

15.
Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders     
Elke Bocksteins 《The Journal of general physiology》2016,147(2):105-125
  相似文献   

16.
Stress-induced flowering     
Kaede C Wada  Kiyotoshi Takeno 《Plant signaling & behavior》2010,5(8):944-947
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

17.
Engineering of a Chimeric RB69 DNA Polymerase Sensitive to Drugs Targeting the Cytomegalovirus Enzyme     
Egor P. Tchesnokov  Aleksandr Obikhod  Raymond F. Schinazi  Matthias G?tte 《The Journal of biological chemistry》2009,284(39):26439-26446
  相似文献   

18.
Lessons from investigation of regulation of APS reductase by salt stress     
Anna Koprivova  Stanislav Kopriva 《Plant signaling & behavior》2008,3(8):567-569
  相似文献   

19.
Regulatory models of RhoA suppression by dematin,a cytoskeletal adaptor protein     
Morvarid Mohseni  Athar H Chishti 《Cell Adhesion & Migration》2009,3(2):191-194
Cell motility, adhesion and actin cytoskeletal rearrangements occur upon integrin-engagement to the extracellular matrix and activation of the small family of Rho GTPases, RhoA, Rac1 and Cdc42. The activity of the GTPases is regulated through associations with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine dissociation inhibitors (GDIs). Recent studies have demonstrated a critical role for actin-binding proteins, such as ezrin, radixin and moesin (ERM), in modulating the activity of small GTPases through their direct associations with GEFs, GAPs and GDI''s. Dematin, an actin binding and bundling phospho-protein was first identified and characterized from the erythrocyte membrane, and has recently been implicated in regulating cell motility, adhesion and morphology by suppressing RhoA activation in mouse embryonic fibroblasts. Although the precise mechanism of RhoA suppression by dematin is unclear, several plausible and hypothetical models can be invoked. Dematin may bind and inhibit GEF activity, form an inactive complex with GDI-RhoA-GDP, or enhance GAP function. Dematin is the first actin-binding protein identified from the erythrocyte membrane that participates in GTPase signaling, and its broad expression suggests a conserved function in multiple tissues.Key words: dematin, RhoA, actin, GTPase, signalingCell adhesion and motility are mediated through activation of integrin receptors and the family of small Rho GTPases.1 Engagement of integrin receptors to the extracellular matrix leads to the activation of multiple kinase pathways (i.e., FAK, Src), inducing the assembly of the focal adhesion complex and actin/myosin contraction. Furthermore, activation of the receptor tyrosine kinases (i.e., insulin receptor) or G-protein coupled receptors (i.e., LPA receptor), leads to downstream signaling events that also trigger multiple kinase pathways that regulate the protrusive and contractile actin/myosin dynamics. These adhesion-dependent or receptor-driven signaling cascades ultimately result in the activation of the small family of Rho GTPases: Cdc42, Rac1 and RhoA, key regulators of actin cytoskeleton assembly. The activation of these GTPases induces lamellipodia (Rac1), filopodia (Cdc42), actin stress fiber formation (RhoA) and focal adhesion complex formation (Rac1 and RhoA). Nascent focal adhesion complex formation within the lamellipodia is a result of Rac1 activation;2 however, mature focal adhesions and actin cytoskeletal rearrangements are a direct consequence of RhoA activation.3The regulation of RhoA activity occurs through its interactions with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine dissociation inhibitors (GDIs) (reviewed in refs. 46). The regulatory intricacies that govern RhoA association with GEFs, GAPs and GDIs remain poorly understood. However, it is now well accepted that actin-binding proteins participate and play a significant role in regulating the functional activity of RhoA GTPase through their direct association with RhoGEFs, GDI''s and RhoGAPs (7

Table 1

List of actin-binding proteins that are known to directly bind to GEFs, GAPs or GDIs and regulate RhoA activation
GEF/GAP/GDIActin binding proteinRef.
GEFsdblRadixin31
TrioTARA32
LfcSpinophilin33
LfcNeurobin33
GAPsCdGAPActopaxin19
Rgd1Vrp120
GDIsRhoGDIEzrin/Radixin/Moesin21
RhoGDIMerlin34
Open in a separate windowDematin, previously known as erythrocyte membrane protein band 4.9, is a member of the villin family of headpiece-containing actin-binding proteins. It contains a c-terminal actin-binding domain, and an N-terminal “core-domain” of unknown function.8,9 Dematin was first isolated and characterized from the mature erythrocyte membrane,10,11 where it functions to maintain erythrocyte shape and membrane structural integrity via a novel linkage at the actin-spectrin junctional complex through glucose transporter-1 (GLUT1) in a species specific manner.12 Despite its wide-spread expression, relatively little is known about the biological function of this actin-binding protein in non-erythroid cells. Previous studies have shown that the human dematin gene (EPB4.9) maps to 8p21.1,9 a chromosomal region that is frequently deleted in prostate cancers. Interestingly, it was demonstrated that a sub-set of metastatic prostate tumors show a loss of heterozygosity of the dematin gene. Furthermore, it was demonstrated that in PC-3 cells, a prostate cancer cell line, the overexpression of the dematin gene was able to revert the oncogenic morphology (cell rounding) to a normal prostate epithelial morphology (microvillar and cytoplasmic extensions), thus suggesting a possible role for dematin in modulating these cellular processes.13 To determine the in vivo function of dematin, a dematin headpiece-null mouse (HPKO) model was generated in our laboratory, lacking the c-terminal actin binding headpiece domain. Consequently, the HPKO model expresses a truncated variant of dematin containing the N-terminal “core-domain.” Hematological analysis of the HPKO erythrocytes revealed evidence of membrane fragility, spherocytosis and mild hemolytic anemia.14 Since the loss of the dematin actin-binding headpiece resulted in morphological defects in the erythrocyte, we extended these studies to investigate if these defects would manifest in non-erythroid cells. Isolated mouse embryonic fibroblasts from HPKO mice display abnormal cell morphology, motility and adhesion, presumably resulting from RhoA hyperactivation and subsequent phosphorylation of downstream signaling molecules, such as focal adhesion kinase (FAK) and myosin light chain (MLC).7 These data suggest that dematin acts upstream of RhoA perhaps by associating with one of the known regulators of RhoA activation: GEFs, GAPs and GDIs (Fig. 1).Open in a separate windowFigure 1Hypothetical models of dematin mediated regulation of RhoA signaling. (A) Dematin has been shown to bind the DH domain of RasGRF2, but does not modulate Rac1 or Ras activation through RasGRF2. In several yeast-2-hybrid RasGRF2 clones, an insert from the GEFD2 domain of the RhoA GEF, Trio, was identified. It is possible that dematin may bind to and inhibits the RhoA GEF activity on Trio. (B) Dematin may complex with GDI and inactive RhoA-GDP, by tethering GDI to the actin cytoskeleton. The release of dematin from the cytoskeleton results in RhoA-GDP release and activation. (C) Dematin may also act to spatially localize RhoGAP to enhance the activity on RhoA-GTP, which in turn results in RhoA suppression.Previous evidence has shown that dematin binds to calcium activated Ras-guanine nucleotide-releasing factor 2 (RasGRF2).15 RasGRF2 is a bifunctional guanine nucleotide exchange factor (GEF) that can modulate the activation of Ras through its Cdc25 domain and Rac1 through its DH-PH domains (Dbl and Plekstrin homology domains).16 Although dematin binds to the DH domain of RasGRF2, dematin was unable to modulate the activation of Rac1 or Ras. Moreover, the yeast-2 hybrid results revealed that several of the isolated RasGRF2 clones contained an insert from the GEFD2 domain of Trio, a RhoA GEF.17 It is therefore plausible, that in vivo, dematin associates with Trio, and inhibits RhoA activation, similar to TRIPalpha, the first known inhibitor of a RhoA GEF, which specifically blocks the Trio GEFD2-exchange activity of RhoA.18 The significance of the postulated in vivo dematin interactions with Ras-GRF2 and TrioRhoGEF has not been established, but taken together; this model may provide a mechanistic link between dematin and RhoA (Fig. 1).RhoGAPs catalyze the hydrolysis of the active GTP-bound state of RhoA to the inactive GDP-bound form through intrinsic GTPase activity. Although there is no indication that dematin binds to a RhoGAP, it is possible that dematin behaves similarly to actopaxin19 and VRP1,20 actin-binding proteins that provide spatial and temporal regulation of RhoGAP function, and consequently RhoA inhibition. In addition to the regulation of RhoA through GEFs and GAPs, the actin-binding proteins, ezrin, radixin and moesin (ERMs) are known to sequester the guanine dissociation inhibitor, GDI, from RhoGDP.21 The tethering of GDI to the actin cytoskeleton reduces GDI activity, resulting in an increase in RhoA activation. Furthermore, recent studies have shown that PKA phosphorylation of GDI results in an increase in the association between GDI and RhoA-GDP, thus resulting in a decrease in RhoA activity.22 Interestingly, PKA phosphorylates and inhibits dematin''s actin-bundling activity by inducing a conformational change in the dematin actin-binding headpiece domain.10,23 It is possible that in the absence of PKA, dematin robustly interacts with GDI resulting in a stronger and tighter linkage to the actin cytoskeleton; thus in turn resulting in an increase in RhoA activation. Phosphorylation of dematin by PKA may result in the release of GDI from dematin and the actin cytoskeleton and causing subsequent suppression of RhoA activity. It is also possible that dematin retains inactive Rho-GDP in the cytosol, through an association with RhoGDI and the actin cytoskeleton. RhoA activation would occur when the dematin-RhoGDI-RhoA-GDP complex disassociates from the cytoskeleton via intracellular signaling events (Fig. 1).In addition to the aforementioned mechanisms of RhoA regulation through GEFs, GAPs and GDIs, it is also possible that dematin participates in the signaling cascade several steps upstream of RhoA activation. Dematin''s interaction with GLUT1,12 and with the scaffolding protein 14-3-3ζ may provide alternative models to investigate the mechanism of dematin-mediated suppression of RhoA. Since dematin interacts with GLUT1, it is possible that dematin mediates GLUT1 trafficking to the plasma membrane. In the absence of dematin, GLUT1 trafficking may be altered, thus resulting in abnormal glucose uptake. Metabolic defects have significant effects on intracellular signaling, which manifest itself in a variety of phenotypes, such as altered cell morphology, motility and adhesion.25 Proteomic analysis, as well as seven consensus 14-3-3 binding motifs, suggests that dematin may interact in vivo with the scaffolding protein, 14-3-3ζ.24 Recent evidence has shown that PI3-Kinase/Akt activation induces the association of an ankyrin repeat domain-containing protein, KANK, with 14-3-3ζ, which in turn results in RhoA activation.26 The mechanism by which KANK negatively regulates 14-3-3ζ-activation of RhoA is unknown. However, it has been reported that the RhoGEF, AKAP-Lbc, is inhibited by anchoring PKA to 14-3-3ζ.27 It is thus possible that dematin exists in a similar complex to suppress RhoA activation.The unexpected finding that dematin functions as a suppressor of RhoA activity has its significance as being the first protein isolated from the erythrocyte that has been functionally linked to a small GTPase and regulates its activity. There is a significant amount of RhoA in the human erythrocytes,28 and it is possible that other cytoskeletal components of the erythrocyte membrane are also able to modulate small Rho-GTPases in vivo. Recent evidence has implicated the small GTPase, Rac1 and Rac2 in modulating the deformability of the erythrocyte membrane29 and Rac GTPases together with mDia2 regulate enucleation in mammalian erythroblasts.30 Although the precise mechanism of these processes is not yet clear, it raises the possibility that the erythrocyte membrane yet again serves as a paradigm for elucidating fundamental biochemical processes beyond the field of red cell biology. Future studies on the dematin-RhoA signaling pathway will be directed toward elucidating the mechanism by which dematin is able to suppress RhoA activation in relevant cell types.  相似文献   

20.
The cell biology of disease: The cellular and molecular basis for malaria parasite invasion of the human red blood cell     
Alan F. Cowman  Drew Berry  Jake Baum 《The Journal of cell biology》2012,198(6):961-971
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号