首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A somatic cell mutant of the CHO-K1 cell selected to be resistant to the killing effects of 25-hydroxycholesterol in the absence of cholesterol is shown to be defective in the inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity by 25-hydroxycholesterol, cholesterol, and lipoproteins, thus maintaining the enzyme activity found in cells in the absence of exogenous sterol constitutively. The mutants phenotype is shown to be dominant with respect to the wild type. Actinomycin D and cycloheximide prevent the increase of HMG-CoA reductase activity that occurs in the CHO-K1 cell when cholesterol is removed from medium. Degradation of the enzyme, measured during inhibition of protein synthesis by cycloheximide, occurs at the same rate in the mutant as in the wild type. Kinetic studies indicate that the Km for two substrates, the activation energy, and a break in the Arrhenius plot are the same for HMG-CoA reductase determined in wild type and mutant cells. From these studies it is concluded that the mutant is defective in the regulation of synthesis of HMG-CoA reductase. Of the four processes which determine cellular cholesterol levels: biosynthesis, esterification, efflux, and uptake, only biosynthesis is altered, demonstrating that these processes are not co-ordinately controlled as has been suggested previously.  相似文献   

2.
Two major mechanisms regulating cholesterol biosynthesis exist in a human renal cancer cell line, Caki-1. Caki-1 is a newly established cell line whose characteristics of rapid growth and active cholesterol synthesis qualify it as a potentially valuable tool for elucidation of regulatory mechanism of cholesterol synthesis and transport. In the absence of exogenous cholesterol, cholesterol is the dominant sterol arising from labeled acetate and mevalonate. As expected, in the presence of exogenous cholesterol, the conversion of acetate to cholesterol and the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) is markedly reduced and this inhibition is released when cholesterol is removed from the medium. An unexpected and possibly unique finding is the inhibition of the conversion of mevalonate to cholesterol in the presence of exogenous cholesterol. This second major control process results in the accumulation of squalene and may involve additional late steps in cholesterol biosynthesis or metabolism. The occurrence of two major mechanisms regulating cholesterol synthesis may be a unique property of renal cancer cells or a previously unrecognized characteristic of a variety of cultured cells.  相似文献   

3.
The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.  相似文献   

4.
5.
Previous results suggested that F2A8, a glycosylation mutant of Chinese hamster ovary cells, had a lower amount of dolichyl phosphate available for asparagine-linked glycosylation reactions relative to parental cells. The steady-state amounts and identities of polyisoprenoid lipids were determined by incubating F2A8, its parental cell line B4-2-1, and wild-type Chinese hamster ovary cells for 24 h with [2-3H]mevalonate. The neutral lipids, ubiquinone, cholesterol, and cholesteryl esters, which were the most highly labeled from [3H]mevalonate, were labeled equally in all three cell types. In wild-type and B4-2-1 cells, mevalonate incorporation into the anionic glycosylated and phosphorylated derivatives of dolichol was 10-fold higher than into the neutral free dolichol and dolichyl esters. In contrast, in F2A8 cells, label accumulated in neutral polyisoprenol lipids, so that the ratio of neutral to anionic lipids was 1:1 rather than 1:10. In wild-type and B4-2-1 cells, the polyisoprenoid found as free alcohol and in phosphorylated and glycosylated forms was shown by high pressure liquid chromatography using a silica column to be primarily dolichol, a polyisoprenol that has a saturated terminal isoprene unit. In contrast, in F2A8 cells the polyisoprenoid found primarily as the free alcohol and in phosphorylated and glycosylated forms appeared to be completely unsaturated polyprenol. The distribution of chain lengths of the labeled polyisoprenols of F2A8, B4-2-1, and wild-type cells was the same as determined by high pressure liquid chromatography using a reverse-phase column, with the predominant chain length being 19 isoprene units. These results combined with our previous studies on the phenotype of the F2A8 mutant indicate that the unsaturated polyprenyl phosphate derivatives do not function as well as dolichyl phosphate derivatives in cellular glycosylation reactions.  相似文献   

6.
Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.  相似文献   

7.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

8.
A somatic cell mutant (Mev-1) auxotrophic for mevalonate by virtue of a complete lack of detectable 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activity has been shown to demonstrate a requirement for a non-sterol mevalonate-derived product for regulation of synthesis of HMG-CoA reductase. A comparison of the effects of 25-hydroxycholesterol and the combination of 25-hydroxycholesterol and mevalonate on HMG-CoA reductase activity, synthesis, and mRNA levels in Mev-1 is presented in this report. The results show a close correlation between activity, rate of synthesis, and mRNA levels for Mev-1 cells treated with 25-hydroxycholesterol alone. Under the conditions of these experiments these effects are relatively small (approximately a 4-fold decrease). A much larger inhibition of HMG-CoA reductase activity and rate of synthesis (approximately 50-fold) is observed upon treatment of Mev-1 cells with a combination of 25-hydroxycholesterol and mevalonate. Yet, under these conditions mRNA levels are still reduced by only a factor of 4. These results are interpreted to suggest that the non-sterol mevalonate-derived regulatory product of HMG-CoA reductase acts by a translational control mechanism.  相似文献   

9.
Squalene synthase (farnesyldiphosphate:farnesyldiphosphate farnesyltransferase, EC 2.5.1.21) converts farnesyl pyrophosphate to squalene, the first metabolic step committed solely to the biosynthesis of sterols. Using a fluorescence-activated cell sorting technique designed to screen for cells defective in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, we isolated a squalene synthase-deficient mutant of Chinese hamster ovary cells. The mutant cell line, designated SSD, exhibits less than 7% of the squalene synthase activity of the parental cell line, CHO-HMGal. Both the SSD and the parental cells stably express HMGal, a model protein for studying the regulated degradation of HMG-CoA reductase, which consists of the membrane domain of HMG-CoA reductase fused to bacterial beta-galactosidase (Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). In this study, the regulatory effects of mevalonate and compactin on the activity levels of HMGal are substantially reduced in SSD cells as compared to the parental cell line. In lipid-poor medium, SSD cell growth is arrested. The rate of [3H]acetate incorporation into cholesterol for the mutant SSD cells is less than 2% of the rate for the parental cells. However, the incorporation of [3H] squalene into sterols is essentially wild type for SSD cells. When the mutant SSD cells are fed [3H]acetate, radioactivity accumulates in farnesol, much of which is secreted into the medium. By growing SSD cells in lipid-poor medium, a revertant cell type, designated SSR, was isolated. In every assay performed the revertant SSR cells exhibited a phenotype that was essentially wild type, demonstrating that the SSD mutant phenotype was the result of a single mutation.  相似文献   

10.
We have isolated clones of an established cell line which express defects in intracellular cholesterol metabolism. Chinese hamster ovary cells were mutagenized, and clones unable to mobilize low density lipoprotein (LDL)-derived cholesterol to the plasma membrane were selected. Biochemical analysis of two mutant clones revealed a phenotype characteristic of the lysosomal storage disease, Niemann-Pick type C. The mutant cell lines were found to be defective in the regulatory responses elicited by LDL-derived cholesterol. LDL-mediated stimulation of cholesterol esterification was grossly defective, and LDL suppression of 3-hydroxy-3-methylglutaryl-CoA reductase was impaired. However, the mutants modulated these activities normally in response to 25-hydroxycholesterol or mevalonate. The LDL-specific defects were predicated by the inability of these mutants to mobilize LDL-derived cholesterol from lysosomes. Cell fractionation studies showed that LDL-derived, unesterified cholesterol accumulated in the lysosomes of mutant cells to significantly higher levels than normal, commensurate with defective movement of cholesterol to other cellular membranes. Characterization of cell lines defective in intracellular cholesterol transport will facilitate identification of the gene(s) required for intracellular cholesterol movement and regulation.  相似文献   

11.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

12.
A variant of a low density lipoprotein receptor-negative Chinese hamster ovary (CHO) cell mutant was isolated using a nutritional selection called MeLoCo. The variant, designated met-18b-2, internalized and metabolized mevalonate at rates 10-40 times greater than the progenitor cells from which they were derived. The extent of incorporation of radioactivity from [3H]mevalonate into steroidal and nonsteroidal mevalonate derivatives, including modified proteins, was much greater in met-18b-2 cells than in their progenitors. Much of the internalized [3H]mevalonate was converted to nonpolar lipids. Unlike wild type CHO cells or the receptor-negative progenitors, met-18b-2 cells were killed by high concentrations of mevalonate (greater than 6 mM) in the culture medium. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity and cholesterol esterification was dramatically more sensitive to mevalonate in met-18b-2 cells than in progenitor cells. In cell extracts, both the rates of conversion of [3H]mevalonate to cholesterol and mevalonate kinase activities were similar for met-18b-2 and progenitor cells. In contrast to progenitor cells, met-18b-2 cells internalized [3H]mevalonate with high capacity (Km approximately 0.3 mM) kinetics. The increased uptake of [3H]mevalonate was temperature dependent and highly specific. These results suggest that met-18b-2 cells express a mevalonate transport activity that is not normally expressed by CHO cells. This activity may be due to a specific mevalonate transporter that is differentially expressed in specialized tissues. Because intracellular mevalonate in met-18b-2 cells can be labeled to high specific activity, these cells should prove very useful in further characterizing the structures of mevalonate derivatives and their metabolism.  相似文献   

13.
The cell wall of human fungal pathogen Aspergillus fumigatus protects the fungus against threats from environment and interacts with the host immune system. Alpha(1-3)glucan is the major polysaccharide of Aspergillus fumigatus cell wall, and it has been shown to contribute to the virulence of diverse fungal pathogens. In A. fumigatus, three putative alpha(1-3)glucan synthase genes AGS1, AGS2 and AGS3 have been identified. AGS1 is responsible for cell wall alpha(1-3)glucan biosynthesis, but strains with deletions of either AGS1 or AGS2 are not defective in virulence [Beauvais, A., Maubon, D., Park, S., Morelle, W., Tanguy, M., Huerre, M., Perlin, D.S., Latgé, J. P., 2005. Two alpha(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 71, 1531-1538]. In contrast, we present evidence that AGS3 is also responsible for cell wall alpha(1-3)glucan biosynthesis and can modulate the virulence of A. fumigatus. An AGS3 deletion strain was found to produce faster and more robust disease than the parental strain in an experimental mouse model of aspergillosis. The apparent hyper-virulence in the AGS3-deleted mutant was correlated with an increased melanin content of the conidial cell wall, a better resistance to reactive oxygen species and a quicker germination rate. These results suggest an indirect role for AGS3 in virulence through an adaptive mechanism.  相似文献   

14.
Chu X  Yu W  Wu L  Liu X  Li N  Li D 《Biochimica et biophysica acta》2007,1774(12):1571-1581
Mevalonate kinase is one of ATP-dependent enzymes in the mevalonate pathway and catalyzes the phosphorylation of mevalonate to form mevalonate 5-phosphate. In animal cells, it plays a key role in regulating biosynthesis of cholesterol, while in microorganisms and plants, it is involved in the biosynthesis of isoprenoid derivatives that are one of the largest groups of natural products. Crystal structure and sequence alignment show that a unique disulfide bond exists in mevalonate kinase of thermostable species Methanococcus jannaschii, but not in rat mevalonate kinase. In the present study, we investigated the effect of the disulfide bond in M. jannaschii mevalonate kinase and an engineered disulfide bond in rat mevalonate kinase mutant A141C on the properties of enzymes through characterization of their wild-type and variant enzymes. Our result suggests that the Cys107-Cys281 disulfide bond is important for maintaining the conformation and the thermal activity of M. jannaschii mevalonate kinase. Other interactions could also have contributions. The thiol-titration and fluorescence experiment further indicate that rat mevalonate kinase A141C variant enzyme has a new disulfide bond, which makes the variant protein enhance its thermal activity and resist to urea denaturation.  相似文献   

15.
The activities of 3-hydroxy-3-methylglutaryl-coenzyme A synthase and reductase were assayed in exponentially growing LM fibroblasts and Friend murine erythroleukemia cells isolated at various stages of the cell cycle by centrifugal elutriation. The activities of these enzymes were similar in all phases of the cell cycle, regardless of whether the cells were cultured in the presence or absence of serum. These observations were confirmed in murine erythroleukemia cells synchronized by recultivation of pure populations of G1 cells. The incorporation of [14C]acetate or 3H2O into sterols decreased by 30-50% in later stages of the cell cycle, whereas the incorporation of [14C]acetate into ubiquinone increased as the cells progressed toward mitosis. Similar changes in the labeling of sterols compared to ubiquinone and dolichol were observed when [3H]mevalonate was used, suggesting that cell cycle-dependent alterations may occur in the flux of farnesyl pyrophosphate into the various branches of the isoprenoid pathway. Synchronized murine erythroleukemia cells incorporated [3H]mevalonate into protein-bound isoprenyl groups at all stages of the cell cycle, and there were no substantial changes in the electrophoretic profiles of these labeled polypeptides. The finding that the activities of the enzymes regulating mevalonate synthesis did not vary substantially during the cell cycle implies that changes in the endogenous mevalonate pool probably do not play a limiting role in regulating cell cycle traverse when cells are undergoing exponential growth. Although small cell cycle-dependent changes may occur in the relative activity of various post-mevalonate branches of the isoprenoid biosynthetic pathway, there is no evidence that synthesis of any major isoprenoid end product is confined exclusively to a specific phase of the cell cycle.  相似文献   

16.
17.
The pathway of biosynthesis of abscisic acid (ABA) can be considered to comprise three stages: (i) early reactions in which small phosphorylated intermediates are assembled as precursors of (ii) intermediate reactions which begin with the formation of the uncyclized C40 carotenoid phytoene and end with the cleavage of 9'-cis-neoxanthin (iii) to form xanthoxal, the C15 skeleton of ABA. The final phase comprising C15 intermediates is not yet completely defined, but the evidence suggests that xanthoxal is first oxidized to xanthoxic acid by a molybdenum-containing aldehyde oxidase and this is defective in the aba3 mutant of Arabidopsis and present in a 1-fold acetone precipitate of bean leaf proteins. This oxidation precludes the involvement of AB-aldehyde as an intermediate. The oxidation of the 4'-hydroxyl group to the ketone and the isomerization of the 1',2'-epoxy group to the 1'-hydroxy-2'-ene may be brought about by one enzyme which is defective in the aba2 mutant and is present in the 3-fold acetone fraction of bean leaves. Isopentenyl diphosphate (IPP) is now known to be derived by the pyruvate-triose (Methyl Erythritol Phosphate, MEP) pathway in chloroplasts. (14C)IPP is incorporated into ABA by washed, intact chloroplasts of spinach leaves, but (14C)mevalonate is not, consequently, all three phases of biosynthesis of ABA occur within chloroplasts. The incorporation of labelled mevalonate into ABA by avocado fruit and orange peel is interpreted as uptake of IPP made in the cytoplasm, where it is the normal precursor of sterols, and incorporated into carotenoids after uptake by a carrier in the chloroplast envelope. An alternative bypass pathway becomes more important in aldehyde oxidase mutants, which may explain why so many wilty mutants have been found with this defect. The C-1 alcohol group is oxidized, possibly by a mono-oxygenase, to give the C-1 carboxyl of ABA. The 2-cis double bond of ABA is essential for its biological activity but it is not known how the relevant trans bond in neoxanthin is isomerized.  相似文献   

18.
Abstract: To investigate the perturbation of ubiquinone biosynthesis by a hypocholesterolemic drug, 3β-(2-di-ethylaminoethoxy)androst-5-en-17-one hydrochloride (U18666A), we measured the incorporation of radioactive mevalonate, methionine, tyrosine, and 4-hydroxybenzoic acid into ubiquinone in glioblastoma cells. These four precursors unanimously showed that ubiquinone biosynthesis was not significantly altered by U18666A, which blocked cholesterol biosynthesis at steps beyond mevalonate formation. The fluctuation of the endogenous mevalonate level had little effect on ubiquinone biosynthesis, implying the relative stability of cellular ubiquinone biosynthesis. Furthermore, exogenously added mevalonate did not have an appreciable effect on ubiquinone biosynthesis. The major ubiquinone produced in rat glioblastoma cells was identified as ubiquinone-9. The mevalonate-derived products accumulated in the U18666A-treated cells differed significantly from those reported in a broken cell study, suggesting the existence of delicate mechanisms regulating the formation of cholesterol intermediates.  相似文献   

19.
Hung WF  Chen LJ  Boldt R  Sun CW  Li HM 《Plant physiology》2004,135(3):1314-1323
Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine biosynthesis. The cia1 mutant had normal green cotyledons but small and albino/pale-green mosaic leaves. Adding AMP, but not cytokinin or NADH, to plant liquid cultures partially complemented the mutant phenotypes. Both ATase1 and ATase2 were localized to chloroplasts. Overexpression of ATase1 fully complemented the ATase2-deficient phenotypes. A T-DNA insertion knockout mutant of the ATase1 gene was also obtained. The mutant was indistinguishable from the wild type. A double mutant of cia1/ATase1-knockout had the same phenotype as cia1, suggesting at least partial gene redundancy between ATase1 and ATase2. Characterizations of the cia1 mutant revealed that mutant leaves had slightly smaller cell size but only half the cell number of wild-type leaves. This phenotype confirms the role of de novo purine biosynthesis in cell division. Chloroplasts isolated from the cia1 mutant imported proteins at an efficiency less than 50% that of wild-type chloroplasts. Adding ATP and GTP to isolated mutant chloroplasts could not restore the import efficiency. We conclude that de novo purine biosynthesis is not only important for cell division, but also for chloroplast biogenesis.  相似文献   

20.
Fatty acid metabolism was examined in Escherichia coli plsB mutants that were conditionally defective in sn-glycerol-3-phosphate acyltransferase activity. The fatty acids synthesized when acyl transfer to glycerol-3-phosphate was inhibited were preferentially transferred to phosphatidylglycerol. A comparison of the ratio of phospholipid species labeled with 32Pi and [3H]acetate in the presence and absence of glycerol-3-phosphate indicated that [3H]acetate incorporation into phosphatidylglycerol was due to fatty acid turnover. A significant contraction of the acetyl coenzyme A pool after glycerol-3-phosphate starvation of the plsB mutant precluded the quantitative assessment of the rate of phosphatidylglycerol fatty acid labeling. Fatty acid chain length in membrane phospholipids increased as the concentration of the glycerol-3-phosphate growth supplement decreased, and after the abrupt cessation of phospholipid biosynthesis abnormally long chain fatty acids were excreted into the growth medium. These data suggest that the acyl moieties of phosphatidylglycerol are metabolically active, and that competition between fatty acid elongation and acyl transfer is an important determinant of the acyl chain length in membrane phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号