首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
It is commonly stated that mixtures of 80% helium and 20% oxygen (helox) increase thermal conductance, and hence heat flux, from homeotherms by roughly a factor of two. However, because helox affects heat loss by conduction and convection differently, its effect on heat flux should vary according to the relative contributions of these two routes to the overall heat flux. We used heated models made of three sizes of copper tubing and covered with various grades of synthetic fur to measure heat flux under air and helox atmospheres. Thermal conductance in helox (Chelox; W•m−2 •°C−1) was highly correlated with thermal conductance in air (Cair) and could be predicted by Chelox=1.704+1.726 Cair. The relative increase in heat flux under a helox atmosphere compared with that in air (conductance ratio; Chelox/Cair) varied from a maximum of 2.5 when thermal conductance is infinitely small and heat flux is predominantly determined by conduction to a minimum of 1.85 when animals are naked and heat flux is dominated by convection. These values follow the relation: Chelox/Cair=2.503−0.081 Cair. Body size has no significant effect on the conductance ratio.  相似文献   

2.
Little information is available on seasonal changes in thermal physiology and energy expenditure in marsupials. To provide new information on the subject, we quantified how body mass, body composition, metabolic rate, maximum heat production, body temperature and thermal conductance change with season in sugar gliders (Petaurus breviceps) held in outdoor aviaries. Sugar gliders increased body mass in autumn to a peak in May/June, which was caused to a large extent by an increase in body fat content. Body mass then declined to minimum values in August/September. Resting metabolic rate both below and above the thermoneutral zone (TNZ) was higher in summer than in winter and the lower critical temperature of the TNZ occurred at a higher ambient temperature (Ta) in summer. The basal metabolic rate was as much as 45% below that predicted from allometric equations for placental mammals and was about 15% lower in winter than in summer. In contrast, maximum heat production was raised significantly by about 20% in winter. This, together with an approximately 20% decrease in thermal conductance, resulted in a 13 degrees C reduction of the minimum effective Ta gliders were able to withstand. Our study provides the first evidence that, despite the apparent lack of functional brown adipose tissue, sugar gliders are able to significantly increase heat production in winter. Moreover, the lower thermoregulatory heat production at most TaS in winter, when food in the wild is scarce, should allow them to reduce energy expenditure.  相似文献   

3.
横断山区中华姬鼠的体温调节和蒸发失水   总被引:2,自引:0,他引:2  
为探讨中华姬鼠的生理生态适应特征,对该鼠的代谢率、热传导、体温和蒸发失水等生理生态指标随环境温度从-5℃ ~ 35℃ 的变化进行了测定。结果表明:中华姬鼠的热中性区(TNZ)为20℃ ~ 30℃ ,平均体温为37. 2 ±0.3℃ ,体温在20℃ ~30℃ 范围内维持恒定;基础代谢率为3.17 ±0.08 ml O2 / g· h,最大非颤抖性产热为5.99 ±0.58 ml O2 / g· h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为1. 90,平均最小热传导(Cm )为0.16 ± 0.02 ml O2 / g· h℃ ,热中性区内,中华姬鼠的F 值(RMR /Kleiber 期望RMR)/ (C /Bradley 期望C)为1.58 ±0.10,中华姬鼠的蒸发失水随着温度增高而增加,蒸发失水在35℃ 达到峰值,为0.10 ±0.02 mgH2 O/ g· h。这些结果表明中华姬鼠对林地的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围;蒸发失水在体温调节中占一定地位;这些特征与该物种的生活习性和栖息生境等因素密切相关,也可能是该物种对横断山区的适应对策。  相似文献   

4.
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo‐neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature ‐ lower critical temperature), ?0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation.  相似文献   

5.
为探讨食虫目小型哺乳动物的代谢产热和体温调节特征,本文采用封闭式流体压力呼吸仪测定了北小麝鼩在环境温度5 ~ 30℃下的静止代谢率(RMR),结果显示:在环境温度(Ta)为17 5 ~25℃ 的范围内,北小麝鼩的体温基本维持恒定,平均体温为36.55 ± 0.38℃ ;热中性区(TNZ) 为20 ~ 25℃ ;基础代谢率BMR 为5.46 ±0.23 (mLO2 /g· h),其中环境温度在25℃ 时静止代谢率最低,为4.84 ± 0.39 (mLO2 /g· h)。在5 ~ 25℃环境温度范围内,热传导值保持稳定;在此温度范围内,北小麝鼩的热传导率(C) 最低,平均为0.42 ± 0.01mLO2 / (g·h·℃ )。总之,北小麝鼩的产热和体温调节特征为较高的BMR,中等的热传导率,较低的体温和较宽的热中性区。这些特征可能与该物种体型小、夜行性、主要以无脊椎动物为食等生活习性密切相关。  相似文献   

6.

1. 1.Thermal parameter of the four Gerbillurus species measured in the laboratory were examined in relation to their micro-environments in a xeric habitat.

2. 2.Basal metabolic rates (BMR) were lower than predicted, while thermoneutral zonds (TNZ) were narrow and exceeded burrow temperatures.

3. 3.Body temperatures (Tb) were regulated over a range of ambient temperatures (Ta). Evaporative water loss was used as a short-term cooling mechanism to reduce hyperthermia above the TNZ.

4. 4.Conductance was low below the TNZ to reduce heat loss.

5. 5.Adaptation to low temperatures is important for gerbils when active at night.

6. 6.The adaptive significance of the thermal biology of Gerbillurus is discussed in relation to phylogeny, distribution, food availability and nocturnal activity.

Author Keywords: Gerbillurus; thermal preferences; temperature regulation; oxygen consumption; conductance; evaporative water loss; behavioural avoidance  相似文献   


7.
Body temperature and metabolic rate during natural hypothermia in endotherms   总被引:12,自引:6,他引:6  
During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.Abbreviations BMR basal metabolic rate - BW body weight - C thermal conductance - CHL thermal conductance as derived from HL - CHP thermal conductance as derived from HP - HL heat loss - HP heat production - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature  相似文献   

8.
Many birds living in regions with seasonal fluctuations in ambient temperatures (Ta) typically respond to cold by increasing insulation and adjusting metabolic rate. Seasonal variation in thermal physiology has not been studied for the Caprimulgiformes, an order of birds that generally have basal metabolic rates (BMR) lower than predicted for their body mass. We measured the metabolic rate and thermal conductance of Australian owlet-nightjars (Aegotheles cristatus) during summer and winter using open-flow respirometry. Within the thermoneutral zone (TNZ; 31.3 to 34.8 °C), there was no seasonal difference in BMR or thermal conductance (C), but body temperature was higher in summer- (38.2 ± 0.3 °C) than winter-acclimatized (37.1 ± 0.5 °C) birds. Below the TNZ, resting metabolic rate (RMR) increased linearly with decreasing Ta, and RMR and C were higher for summer- than winter-acclimatized birds. The mean mass-specific BMR of owlet-nightjars (1.27 mL O2 g− 1 h− 1) was close to the allometrically predicted value for a 45 g Caprimulgiformes, but well below that predicted for birds overall. These results suggest that owlet-nightjars increase plumage insulation to cope with low winter Ta, which is reflected in the seasonal difference in RMR and C below the TNZ, rather than adjusting BMR.  相似文献   

9.
Evaporative water loss (EWL) and energy metabolism were measured at different temperatures in Eothenomys miletus and Apodemus chevrieri in dry air. The thermal neutral zone (TNZ) of E. miletus was 22.5–30 °C and that of A. chevrieri was 20–27.5 °C. Mean body temperatures of the two species were 35.75±0.5 and 36.54±0.61 °C. Basal metabolic rates (BMR) were 1.92±0.17 and 2.7±0.5 ml O2/g h, respectively. Average minimum thermal conductance (Cm) were 0.23±0.08 and 0.25±0.06 ml O2/g h °C. EWL in E. miletus and A. chevrieri increased with the increase in temperature; the maximal EWL at 35 °C was 4.78±0.6 mg H2O/g h in E. miletus, and 5.92±0.43 mg H2O/g h in A. chevrieri. Percentage of evaporative heat loss to total heat production (EHL/HP) increased with the increase in temperature; the maximal EHL/HP was 22.45% at 30 °C in E. miletus, and in A. chevrieri it was 19.96% at 27.5 °C. The results may reflect features of small rodents in the Hengduan mountains region: both E. miletus and A. chevrieri have high levels of BMR and high levels of total thermal conductance, compared with the predicted values based on their body masses, while their body temperatures are relatively low. EWL plays an important role in temperature regulation.  相似文献   

10.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

11.
为探讨北方迁徙性鸟类北红尾鸲(Phoenicurus auroreus)在越冬环境的代谢特征及体温调节,本文采用开放式氧气分析仪和数字式温度测量仪测定了在环境温度(Ta) 5、10、15、20、25、27.5、30、32.5、35、37.5、40℃条件下的代谢率(MR)和体温(Tb),并计算不同温度的热传导(C)。结果表明:在Ta为5~35℃范围内,北红尾鸲的Tb基本维持恒定,平均为40.3±0.1℃;热中性区(TNZ)为25~35℃;基础代谢率(BMR)为50.25±1.35 mL O2·h-1,是Londo1o等(2015)体重预期值的151%;在Ta为5~25℃范围内,MR随Ta的降低而显著增加,回归方程为:MR (m L O2·h-1)=99.65-1.93Ta(r=-0.707,P<0.001);高于35℃时,MR随Ta升高增加;当Ta为40℃时,MR达到59.78±1.31 mL O2·h-1;在Ta为5~25℃范围内,北红尾鸲的C最低且基本保持恒定,为0.17±0.01 mL O2·g-1·h-1·℃-1,是Aschoff(1981)体重预测值的111%;北红尾鸲的基本热生物学特征为较高的Tb、BMR和C以及较宽的TNZ,具有北方地区小型鸟类的代谢特点。  相似文献   

12.
Passerines that overwinter in temperate climates undergo seasonal acclimatization that is characterized by metabolic adjustments that may include increased basal metabolic rate (BMR) and cold-induced summit metabolism (M(sum)) in winter relative to summer. Metabolic changes must be supported by equivalent changes in oxygen transport. While much is known about the morphology of the avian respiratory system, little is known about respiratory function under extreme cold stress. We examined seasonal variation in BMR, M(sum), and ventilation in seasonally acclimatized house sparrows from Wisconsin. BMR and M(sum) increased significantly in winter compared with summer. In winter, BMR increased 64%, and M(sum) increased 29% over summer values. The 64% increase in winter BMR is the highest recorded for birds. Metabolic expansibility (M(sum)/BMR) was 9.0 in summer and 6.9 in winter birds. The metabolic expansibility of 9.0 in summer is the highest yet recorded for birds. Ventilatory accommodation under helox cold stress was due to changes in breathing frequency (f), tidal volume, and oxygen extraction efficiency in both seasons. However, the only significant difference between summer and winter ventilation measures in helox cold stress was f. Mean f in helox cold stress for winter birds was 1.23 times summer values.  相似文献   

13.

1. 1. The response of oxygen consumption (VO2), thermal conductance (Cd and Cmin, body temperature (Tb), and evaporative water loss (EWL) of Tatera leucogaster and Desmodillus auricularis were measured over the range of ambient temperatures (Ta) from 5–35°C.

2. 2. Basal metabolic rate (BMR) of T. leucogaster was 0.841 ± 0.049 ml O2 g−1 h−1 and lower than predicted, while that of D. auricularis was similar to the expected value (1.220 ± 0.058 ml O2 g−1 h−1). D. auricularis had a high, narrow thermoneutral zone (TNZ) typical of nocturnal, xerophilic, burrowing rodents.

3. 3. D. auricularis and T. leucogaster regulated Tb over the range Ta = 5–35°C and kept EWL and dry thermal conductance at a minimum below the TNZ. However, the EWL of T. leucogaster increased rapidly above Ta = 30°C.

4. 4. After comparison with data from other species, it was concluded that there is an optimum size for xeric, nocturnal, burrowing rodents.

Author Keywords: thermoregulation; BMR; gerbil  相似文献   


14.

1. 1.|The effectiveness of a gas environment consisting of 80% helium and 20% oxygen (Helox) in reducing a rabbit's fever due to an i.v. injection of endotoxin was found to be dependent on the amount of pyrogen injected.

2. 2.|When a relatively large dose of pyrogen was injected, the helox environment used in these experiments reduced the mean maximum temperature reached during the fever from 41.5 to 40.5°C, but the helox did not significantly alter the change in temperature from baseline levels prior to the injection (a 1.4°C increase in air and a 1.1°C increase in helox).

3. 3.|When a relatively low dose of pyrogen was injected, the helox environment increased the change in temperature from baseline at peak fever, but did not produce a significant change in the actual temperatures attained during the fever.

Author Keywords: Helox; fever; rabbit; endotoxin  相似文献   


15.
In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.  相似文献   

16.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

17.
由于金冠戴菊冬季的分布地与红玉冠戴菊相比更偏北,生活的环境更加寒冷,人们认为金冠戴菊对寒冷的耐受力更强。然而,有关红玉冠戴菊和金冠戴菊两者之间对寒冷的耐受性和最大产热能力的直接证据尚无报道。在美国南达科他秋季鸟类迁徙季节,作者采用冷暴露氦氧混合气体(79%氦和21%氧),对红玉冠戴菊和金冠戴菊的寒冷耐受能力和最大代谢率(最大冷诱导代谢,Msux)进行了测定。结果显示:金冠戴菊对低温的耐受能力高于红玉冠戴菊,由于金冠戴菊和红玉冠戴菊的体重和热传导差异不显著,表明对低温的耐受能力的差异不是体重和热传导引起的;而金冠戴菊的最大代谢产热(2.51ml±0.32mlO2min-1,n=11)明显高于雄性(2.27ml±0.25mlO2min-1,n=13)和雌性(2.05ml±0.18mlO2min-1,n=13)的红玉冠戴菊,表明最大代谢的差异可能导致对寒冷的耐受能力不同。相对于红玉冠戴菊,金冠戴菊有良好的耐寒冷能力,与其在冬季分布更北相一致,并与其高的代谢产热能力有关,此模式和许多雀形目鸟类在季节性驯化中增加对寒冷的耐受能力相一致。  相似文献   

18.
Basal rate of metabolism (BMR) and temperature regulation are described for Goeldi's monkey (Callimico goeldii), a threatened New World primate species of the family Callitrichidae. Measurements were conducted on sleeping individuals during the night, using a special nestbox designed to serve as a respirometry chamber, such that test animals remained undisturbed in their customary surroundings. Oxygen consumption was measured at ambient temperatures between 17.5 and 32 degrees C for 10 individuals with an average body mass of 557 g. Average BMR was 278+/-41 ml O(2) h(-1), which is lower than the value predicted on the basis of body mass. Individual differences in BMR were significant even when body mass was accounted for. Body temperature was measured in five individuals below thermoneutrality and averaged 36+/-0.3 degrees C. The corresponding thermal conductance averaged 29.3+/-2.2 ml O(2) h(-1) degrees C(-1), which is similar to the expected value. The metabolic and thermoregulatory patterns observed in C. goeldii resemble those of the closely related marmosets and tamarins. Low BMR is presumably associated with limited access to energy resources and may be directly linked with phylogenetic dwarfing in the family Callitrichidae.  相似文献   

19.
Low-flow postural tachycardia syndrome (POTS) is associated with increased plasma angiotensin II (ANG II) and reduced neuronal nitric oxide (NO), which decreases NO-dependent vasodilation. We tested whether the ANG II type 1 receptor (AT(1)R) antagonist losartan would improve NO-dependent vasodilation in POTS patients. Furthermore, if the action of ANG II is dependent on NO, then the NO synthase inhibitor nitro-L-arginine (NLA) would reverse this improvement. We used local heating of the skin of the left calf to 42 degrees C and laser-Doppler flowmetry to assess NO-dependent conductance [percent maximum cutaneous vascular conductance (%CVC(max))] in 12 low-flow POTS patients aged 22.5 +/- 0.8 yr and in 15 control subjects aged 22.0 +/- 1.3 yr. After measuring the baseline local heating response at three separate sites, we perfused individual intradermal microdialysis catheters at those sites with 2 microg/l losartan, 10 mM NLA, or losartan + NLA. The predrug heat response was reduced in POTS, particularly the plateau phase reflecting NO-dependent vasodilation (50 +/- 5 vs. 91 +/- 7 %CVC(max); P < 0.001 vs. control). Losartan increased baseline flow in both POTS and control subjects (from 6 +/- 1 to 21 +/- 3 vs. from 10 +/- 1 to 21 +/- 2 %CVC(max); P < 0.05 compared with predrug). The baseline increase was blunted by NLA. Losartan increased the POTS heat response to equal the control subject response (79 +/- 7 vs. 88 +/- 6 %CVC(max); P = 0.48). NLA decreased both POTS and control subject heat responses to similar conductances (38 +/- 4 vs. 38 +/- 3 %CVC(max); P < 0.05 compared with predrug). The addition of NLA to losartan reduced POTS and control subject conductances compared with losartan alone (48 +/- 3 vs. 53 +/- 2 %CVC(max)). The data suggest that the reduction in cutaneous NO-dependent vasodilation in low-flow POTS is corrected by AT(1)R blockade.  相似文献   

20.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号